

The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance

INL/EXT-09-17015

Systems Analysis
Programs for Hands-On
Integrated Reliability
Evaluations (SAPHIRE)
Version 8

Volume 7 Data Loading

K. J. Kvarfordt
S. T. Wood
C. L. Smith
S. R. Prescott

March 2011

INL/EXT-09-17015
NUREG/CR-7039

Systems Analysis Programs for Hands-On Integrated
Reliability Evaluations (SAPHIRE) Version 8

Volume 7 Data Loading

K. J. Kvarfordt
S. T. Wood
C. L. Smith

S. R. Prescott

March 2011

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
Division of Risk Analysis

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission

Washington, D.C. 20555
Job Code N6423

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room, Rockville Pike, Rockville, MD 20852 (pdr@nrc.gov)

2. The Superintendent of Documents, U. S. Government Printing Office (GPO), Mail Stop
SSOP, Washington, DC 20402-9328

3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications,
it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public
Document Room include NRC correspondence and internal NRC memoranda; NRC bulletins,
circulars, information notices, inspection and investigative notices; licensee event reports;
vendor reports and correspondence; Commission papers; and applicant and licensee
documents and correspondence.

The following documents in the NUREG series are available for purchase from the GPO Sales
Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings,
international agreement reports, grant publications, and NRC booklets and brochures. Also
available are regulatory guides, NRC regulations in the Code of Federal Regulations, and
Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG-series
reports and technical reports prepared by other Federal agencies and reports prepared by the
Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items,
such as books, journal articles, and transactions. Federal Register notices, Federal and State
legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC
conference proceedings are available for purchase from the organization sponsoring the
publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written
request to the Office of Administration, Distribution and Mail Services Section U. S. Nuclear
Regulatory Commission, Washington, DC 20555-0001.

The public maintains copies of industry codes and standards used in a substantive manner in
the NRC regulatory process at the NRC Library, Two White Flint North, 11545 Rockville Pike,
Rockville, MD, 20852, for use. Codes and standards are usually copyrighted and may be
purchased from the originating organization or, if they are American National Standards, from
the American National Standards Institute, 1430 Broadway, New York, NY 10018.

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, or any of their employees, makes any warranty, expressed or
implied, or assumes any legal liability of responsibility for any third party’s use, or
the results of such use, or any information, apparatus, product or process
disclosed in this report, or represents that its use by such third party would not
infringe privately owned rights.

ii

PREVIOUS REPORTS

S. T. Wood, C. L. Smith, K. J. Kvarfordt, S. T. Beck, Systems Analysis Programs for Hands-on
Integrated Reliability Evaluations (SAPHIRE) Vol. 1 Summary Manual, NUREG/CR-6952,
August 2008.

C. L. Smith, S. T. Wood, W. J. Galyean, J. A. Schroeder, S. T. Beck, M. B. Sattison, Systems
Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Vol. 2 Technical
Reference, NUREG/CR-6952, August 2008.

K. J. Kvarfordt, S. T. Wood, C. L. Smith, Systems Analysis Programs for Hands-on Integrated
Reliability Evaluations (SAPHIRE) Vol. 3 Code Reference Manual, NUREG/CR-6952, August
2008.

S. T. Beck, S. T. Wood, C. L. Smith, Systems Analysis Programs for Hands-on Integrated
Reliability Evaluations (SAPHIRE) Vol. 4 Tutorial, NUREG/CR-6952, August 2008.

C. L. Smith, J. Schroeder, S. T. Beck, Systems Analysis Programs for Hands-on Integrated
Reliability Evaluations (SAPHIRE) Vol. 5 GEM Manual, NUREG/CR-6952, August 2008.

C. L. Smith, R. Nims, K. J. Kvarfordt, C. Wharton, Systems Analysis Programs for Hands-on
Integrated Reliability Evaluations (SAPHIRE) Vol. 6 Quality Assurance Manual, NUREG/CR-
6952, August 2008.

K. J. Kvarfordt, S. T. Wood, C. L. Smith, Systems Analysis Programs for Hands-on Integrated
Reliability Evaluations (SAPHIRE) Vol. 7 Data Loading Manual, NUREG/CR-6952, August
2008.

Smith, C. L., et al., Testing, Verifying, and Validating SAPHIRE Versions 6.0 and 7.0,
NUREG/CR-6688, October 2000.

K. D. Russell, et al. Systems Analysis Programs for Hands-on Reliability Evaluations
(SAPHIRE) Version 6.0 - System Overview Manual, NUREG/CR-6532, May 1999.

K. D. Russell et al., Integrated Reliability and Risk Analysis System (IRRAS) Version 5.0,
Volume 2 - Reference Manual, NUREG/CR-6116, EGG-2716, July 1994.

K. D. Russell et al., Verification and Validation (V&V), Volume 9 – Reference Manual,
NUREG/CR-6116, EGG-2716, July 1994.

K. D. Russell et al., Integrated Reliability and Risk Analysis System (IRRAS) Version 4.0,
Volume 1 - Reference Manual, NUREG/CR-5813, EGG-2664, January 1992.

K. D. Russell et al., Integrated Reliability and Risk Analysis System (IRRAS) Version 2.5
Reference Manual, NUREG/CR-5300, EGG-2613, March 1991.

K. D. Russell, M. B. Sattison, D. M. Rasmuson, Integrated Reliability and Risk Analysis
System (IRRAS) - Version 2.0 User's Guide, NUREG/CR-5111, EGG-2535, manuscript
completed March 1989, published June 1990.

K. D. Russell, D. M. Snider, M. B. Sattison, H. D. Stewart, S.D. Matthews, K. L. Wagner,
Integrated Reliability and Risk Analysis System (IRRAS) User's Guide - Version 1.0 (DRAFT),
NUREG/CR-4844, EGG-2495, June 1987.

iii

ABSTRACT

The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations
(SAPHIRE) is a software application developed for performing a complete
probabilistic risk assessment (PRA) using a personal computer. SAPHIRE
Version 8 is funded by the U.S. Nuclear Regulatory Commission and developed
by the Idaho National Laboratory. This report is intended to assist the user to
enter PRA data into the SAPHIRE program using the built-in MAR-D ASCII-text
file data transfer process. Towards this end, a small sample database is
constructed and utilized for demonstration. Where applicable, the discussion
includes how the data processes for loading the sample database relate to the
actual processes used to load a larger PRA models. The procedures described
herein were developed for use with SAPHIRE Version 8. The guidance specified
in this document will allow a user to have sufficient knowledge to both
understand the data format used by SAPHIRE and to carry out the transfer of
data between different PRA projects.

iv

v

FOREWORD

The U.S. Nuclear Regulatory Commission (NRC) has developed the Systems Analysis
Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) software that is used to
perform probabilistic risk assessments (PRAs) on a personal computer. SAPHIRE enables
users to supply basic event data, create and solve fault and event trees, perform uncertainty
analyses, and generate reports. In that way, analysts can perform PRAs for any complex
system, facility, or process.

For nuclear power plant PRAs, SAPHIRE can be used to model a plant's response to initiating
events, quantify core damage frequencies, and identify important contributors to core damage
(Level 1 PRA). The program also can be used to evaluate containment failure and release
models for severe accident conditions given that core damage has occurred (Level 2 PRA). In
so doing, the analyst could build the PRA model assuming that the reactor is initially at full
power, low power, or shutdown. In addition, SAPHIRE can be used to analyze both internal and
external events and, in a limited manner, to quantify the frequency of release consequences
(Level 3 PRA). Because this software is a very detailed technical tool, users should be familiar
with PRA concepts and methods used to perform such analyses.

SAPHIRE has evolved with advances in computer technology and users’ needs. Starting with
Version 5, SAPHIRE operated in the Microsoft Windows™ environment. Versions 6 and 7
included features and capabilities for developing and using larger, more complex models.
SAPHIRE Version 8 includes significant new features and capabilities to meet user needs for
NRC risk-informed programs. In general, these include:

� Improved user interfaces supporting NRC’s Significance Determination Process, event and
condition assessments, and more detailed types of PRA analyses.

� Development and use of NRC’s Standardized Plant Analysis Risk models.

� New and improved solving algorithms.

� Support features for user-friendliness.

This NUREG-series report comprises seven volumes as outlined below and incorporates new
features and capabilities of Version 8.

Volume 1, “Overview and Summary”

Volume 1 provides an overview of the functions and features available in SAPHIRE Version 8
and presents general instructions for using the software.

Volume 2, “Technical Reference”

Volume 2 summarizes the fundamental mathematical concepts of sets and logic, fault trees, and
probability. It then describes the algorithms used to construct a fault tree and to obtain the
minimal cut sets. This report presents the formulas used to obtain the probability of the top
event from the minimal cut sets and the formulas for probabilities that apply for various
assumptions concerning reparability and mission time. In addition, it defines the measures of
basic event importance that SAPHIRE can calculate. This volume also gives an overview of
uncertainty analysis using simple Monte Carlo sampling or Latin Hypercube sampling and states

vi

the algorithms used by this program to generate random basic event probabilities from various
distributions. Finally, this report discusses enhanced and new capabilities such as post-
processing rules, integrated model solving using model types, and workspace analysis routines.

Volume 3, “Users’ Guide”

Volume 3 provides a brief discussion of the purpose and history of the software as well as
general information such as installation instructions, starting and stopping the program, and
some pointers on how to get around inside the program. Next, it discusses database concepts
and structure. The following nine sections (one for each of the menu options on the SAPHIRE
main menu) furnish the purpose and general capabilities for each option. Finally, Volume 3
provides the capabilities and limitations of the software.

Volume 4, “Tutorial”

Volume 4 provides a series of lessons that guide the user through basic steps common to most
analyses performed with SAPHIRE.

Volume 5, “Workspaces”

Volume 5 describes the functionality and process behind SAPHIRE Version 8 workspaces.
Workspaces provide an area in which a PRA model can be analyzed to obtain risk insights for a
given initiating event or condition. Workspaces replace the “Graphical Evaluation Module” in
earlier SAPHIRE versions.

Volume 6, “Quality Assurance”

Volume 6 is designed to describe how the SAPHIRE software quality assurance (QA) is
performed for Version 8, what constitutes its parts, and the limitations of those processes. In
addition, this report describes the Independent Verification and Validation that was conducted
for Version 8 as part of an overall QA process.

Volume 7, “Data Loading”

Volume 7 is designed to guide the user through the basic procedures necessary to enter PRA
data into the SAPHIRE program using SAPHIRE’s MAR-D ASCII-text (or “flat file”) data formats.
In addition, this manual covers loading data through the new Accident Sequence Matrix and
discusses the Project Integrate interfaces with SAPHIRE.

Christiana H. Lui, Director

Division of Risk Analysis

Office of Nuclear Regulatory Research

U.S. Nuclear Regulatory Commission

vii

CONTENTS

Section Page

PREVIOUS REPORTS ... ii�

ABSTRACT .. iii�

FOREWORD ... v�

LIST OF FIGURES .. ix�

LIST OF TABLES ... ix�

EXECUTIVE SUMMARY ... xi�

ACKNOWLEDGEMENTS ... xiii�

ACRONYMS ... xv�

1.� INTRODUCTION .. 1�

1.1� Background .. 1�

1.2� Assumptions and Recommendations ... 3�

2.� OVERVIEW OF DATABASE CONCEPTS ... 5�

2.1� SAPHIRE Database Unit - The Project .. 5�

2.2� File Management ... 5�

3.� THE SAMPLE DATABASE .. 9�

3.1� The Sample Database ... 9�

3.2� The Sample Database Event Tree ... 9�

3.3� The Sample Database Fault Trees .. 11�

3.4� The Sample Database Basic Events .. 14�

3.5� Sample Database Fault Tree Cut Sets .. 16�

3.6� Sample Database Sequence Cut Sets ... 17�

3.7� Sample Database Post-processing Actions ... 18�

3.8� Sample Database Uncertainty ... 18�

3.9� Sample Database Importance .. 19�

4.� LOADING THE SAMPLE DATABASE ... 21�

4.1� Introduction .. 21�

Flat File Data Importing/Exporting ... 21�

4.2� Adding and Selecting the Database Project ... 22�

4.2.1� Adding the Project .. 22�
4.2.2� Selecting the Project .. 22�

viii

4.2.3� Entering Project Information, Description, and Text 22�
4.2.4� Extracting and Verifying the Project Data ... 24�

4.3� Loading the Event Tree Data ... 24�

4.3.1� Entering the Event Tree Logic .. 26�
4.3.2� Entering Sequence Names in Graphics ... 27�
4.3.3� Entering Top Event Descriptions .. 28�
4.3.4� Entering Link (Substitution) Rules .. 29�
4.3.5� Generating and Verifying Event Tree Logic ... 30�

4.4� Entering End State Data .. 32�

4.4.1� Entering End State Names in Graphics .. 32�
4.4.2� Entering End States for Analysis .. 33�
4.4.3� Entering End State Description and Text ... 33�

4.5� Loading the Fault Tree Data .. 33�

4.5.1� Entering Fault Tree Logic ... 35�
4.5.2� Entering Fault Tree Descriptions and Text ... 37�
4.5.3� Entering Gate Descriptions and Attributes ... 38�
4.5.4� Generating Fault Tree Cut Sets ... 39�
4.5.5� Verifying the Fault Tree Data ... 40�

4.6� Loading Basic Event Data .. 40�

4.6.1� Adding/Modifying Basic Events .. 42�
4.6.2� Basic Event Flat File Formats .. 42�
4.6.3� Additional Basic Event Data Flat Files ... 42�

4.7� Loading Sequence Data ... 47�

4.7.1� Generating Sequence Cut Sets .. 47�
4.7.2� Entering the Sequence Description and Text ... 48�

4.8� Post-processing Actions ... 49�

4.9� Analyzing Uncertainty .. 50�

4.9.1� Generating Uncertainty for Fault Tree Cut Sets ... 50�
4.9.2� Generating Uncertainty for Sequence Cut Sets ... 51�
4.9.3� Generating Uncertainty for End States ... 51�
4.9.4� Generating Uncertainty for Groups of Sequences or the Project 52�

5.� Other Data Loading Methods ... 53�

5.1� Loading Data via an Accident Sequence Matrix .. 53�

5.2� Integrate Project Utility ... 54�

 Appendix A - Procedures for Database Loading………………………………………………… A-1

Appendix B - General MAR-D Data Interchange Formats ..…………………………………….. B-1

Appendix C - MAR-D Files for Sample Database……………………………………………….. C-1

ix

LIST OF FIGURES

Figure Page

Figure 1. Going-to-work (WORK) event tree .. 10�

Figure 2. Alarm clock failure fault tree ... 12�

Figure 3. Personal problems fault tree ... 12�

Figure 4. Transportation failure fault tree (normal time frame) .. 13�

Figure 5. Transportation failure fault tree (late time frame) .. 13�

Figure 6. Modify Project dialog .. 23�

Figure 7. Going to work event tree graphic .. 25�

Figure 8. Sequence generation logic report ... 31�

Figure 9. Fault tree graphical editor ... 36�

Figure 10. The modify basic event dialog .. 41�

Figure 11. Information for an accident sequence matrix file .. 53�

Figure 12. First step of the Project Integration option .. 55�

LIST OF TABLES

Table Page

Table 1. SAPHIRE database file names and descriptions. .. 7�

Table 2. Basic event values for the sample problem. .. 14�

Table 3. Basic event descriptions for the sample problem. ... 15�

Table 4. Fault tree cut set results. .. 16�

Table 5. Sequence cut set results. ... 17�

Table 6. Fault Tree uncertainty values report. ... 18�

Table 7. Sequence uncertainty values report. ... 18�

Table 8. End state uncertainty values report. ... 19�

x

Table 9. Results of sample database importance analysis. ... 19�

Table 10. Extracted project flat files. .. 24�

Table 11. Extracted project flat files for the sample project. .. 24�

Table 12. Extracted event tree flat files (with logic and sequence names only). 27�

Table 13. Event tree file (with logic, sequence, end state name, and top event descriptions)... 28�

Table 14. Extracted event tree description and text flat files. .. 29�

Table 15. Extracted event tree rules flat file. .. 30�

Table 16. Extracted sequence logic flat files. ... 31�

Table 17. Extracted end state flat files. .. 32�

Table 18. Extracted fault tree logic and graphic flat files. .. 37�

Table 19. Extracted fault tree descriptions and text flat files. ... 37�

Table 20. Extracted fault tree gate flat files. ... 38�

Table 21. Extracted fault tree cut sets flat files. ... 40�

Table 22. Extracted basic event descriptions flat file. .. 44�

Table 23. Extracted basic event data flat files. .. 45�

Table 24. Extracted sequence cut sets flat files. .. 48�

Table 25. Extracted sequence description and text flat files. ... 49�

Table 26. Extracted fault tree attributes (uncertainty) flat file. .. 51�

xi

EXECUTIVE SUMMARY

The Data Loading report contains an overview of functions for creating event trees and fault
trees, defining accident sequences and basic event failure data, solving system fault trees and
accident sequence event trees, quantifying cut sets, performing sensitivity and uncertainty
analyses, documenting the results, and generating reports. The process of creating a SAPHIRE
Version 8 project is described in terms of the ASCII-formatted data structures available via the
Load and Extract (aka, MAR-D) option. MAR-D is a mechanism in SAPHIRE to import or export
probabilistic risk assessment data – via an open text format – for use, modification, or storage
outside of SAPHIRE.

In order to understand the data import/export functionality, one must understand the parts of a
SAPHIRE project. A project is any grouping of fault trees and event trees with their associated
basic events, cut sets, reliability data, and descriptions. Inside a project, SAPHIRE reserves
storage areas for the various types of information. For example, all basic event data is
automatically placed in the base case part of the database (the “current case” part of the
database is used only when performing an analysis). Note that basic fault tree and event tree
logic remains the same for both current and base cases.

The tutorial in this document leads the student through (a) the basic construction of event tree
and fault trees, (b) entering basic event data, and (c) generation and quantification of both fault
tree and sequence cut sets. Once the project is complete, the data structures related to the
fault trees, event trees, and basic events are discussed. The example that is used is one of
modeling upset conditions related to going to work. Consequently, a “going to work” event tree
and associated fault trees are used.

One application of the data files that are available from SAPHIRE is for use in quality assurance
practices. These text-formatted files may be exported, reviewed by an independent party, and
stored for later retrieval. Toward that end, the format for all information that may be entered into
SAPHIRE and later exported is defined. For example, one section describes how to load fault
trees and associated data in order to verify their accuracy.

The types of data that are defined and discussed in this document include:

Project name and descriptions
Project attributes
Project text
Project event tree recovery rules
Project fault tree recovery rules
Project end state partition rules

Basic event names and descriptions
Basic event failure rates
Basic event attributes
Basic event transformations and compound events
Basic event compound information

xii

Basic event notes
Basic event category
Basic event grade

Fault tree graphics
Fault tree names and descriptions
Fault tree text
Fault tree attributes
Fault tree logic
Fault tree cut sets
Fault tree recovery rules

Event tree graphics
Event tree names and descriptions
Event tree text
Event tree attributes
Event tree logic
Event tree rules
Event tree recovery rules
Event tree end state partition rules

End state names and descriptions
End state text
End state cut sets

Sequence names and descriptions
Sequence cut sets
Sequence attributes
Sequence text
Sequence logic
Sequence recovery rules
Sequence end state partition rules

Gate description
Gate attributes

Histogram attributes
Histogram descriptions
Histogram information

xiii

ACKNOWLEDGEMENTS

We would like to specifically acknowledge Mr. Dan O’Neal of the U.S. Nuclear Regulatory
Commission for his contribution to the development this report.

xiv

xv

ACRONYMS

EMF enhanced metafile

FEP Fault Tree, Event Tree, and Piping and Instrumentation Diagram Editors

INEEL Idaho National Engineering and Environmental Laboratory

INL Idaho National Laboratory

IPE individual plant examination

IRRAS Integrated Reliability and Risk Analysis System

MAR-D Models and Results Database

NRC Nuclear Regulatory Commission

PC personal computer

PRA probabilistic risk analysis

RTF rich text format

SAPHIRE Systems Analysis Programs for Hands-on Integrated Reliability Evaluations

SARA System Analysis and Risk Assessment

SETS Set Equation Transformation System

WMF Windows metafile

1

Systems Analysis Programs for Hands-on Integrated
Reliability Evaluations (SAPHIRE) Version 8

Volume 7 Data Loading
1. INTRODUCTION

1.1 Background

The U.S. Nuclear Regulatory Commission (NRC) has developed a powerful personal computer
(PC) software application for performing probabilistic risk assessments (PRAs), called Systems
Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Version 8.

Using SAPHIRE 8 on a PC, an analyst can perform a PRA for any complex system, facility, or
process. Regarding nuclear power plants, SAPHIRE can be used to model a plant’s response to
initiating events, quantify associated core damage frequencies, and identify important
contributors to core damage (Level 1 PRA). It can also be used to evaluate containment failure
and release models for severe accident conditions, given that core damage has occurred (Level
2 PRA). It can be used for a PRA assuming that the reactor is at full power, at low power, or at
shutdown conditions. Furthermore, it can be used to analyze both internal and external initiating
events, and it has special features for transforming models built for internal event analysis to
models for external event analysis. It can also be used in a limited manner to quantify risk for
release consequences to both the public and the environment (Level 3 PRA). For all of these
models, SAPHIRE can evaluate the uncertainty inherent in the probabilistic models.

SAPHIRE development and maintenance has been undertaken by the Idaho National
Laboratory (INL). The INL began development of a PRA software application on a PC in the mid
1980s when the enormous potential of PC applications started being recognized. The initial
version, Integrated Risk and Reliability Analysis System (IRRAS), was released by the Idaho
National Engineering Laboratory (now Idaho National Laboratory) in February 1987. IRRAS was
an immediate success, because it clearly demonstrated the feasibility of performing reliability
and risk assessments on a PC and because of its tremendous need (Russell 1987).
Development of IRRAS continued over the following years. However, limitations to the state of
the-art during those initial stages led to the development of several independent modules to
complement IRRAS capabilities (Russell 1990; 1991; 1992; 1994). These modules were known
as Models and Results Database (MAR-D), System Analysis and Risk Assessment (SARA),
and Fault Tree, Event Tree, and Piping and Instrumentation Diagram (FEP).

IRRAS was developed primarily for performing a Level 1 PRA. It contained functions for creating
event trees and fault trees, defining accident sequences and basic event failure data, solving
system fault trees and accident sequence event trees, quantifying cut sets, performing
sensitivity and uncertainty analyses, documenting the results, and generating reports.

2

MAR-D provided the means for loading and unloading PRA data from the IRRAS relational
database. MAR-D used a simple ASCII data format. This format allowed interchange of data
between PRAs performed with different types of software; data of PRAs performed by different
codes could be converted into the data format appropriate for IRRAS, and vice-versa.

SARA provided the capability to access PRA data and results (descriptive facility information,
failure data, event trees, fault trees, plant system model diagrams, and dominant accident
sequences) stored in MAR-D. With SARA, a user could review and compare results of existing
PRAs. It also provided the capability for performing limited sensitivity analyses. SARA was
intended to provide easier access to PRA results to users that did not have the level of
sophistication required to use IRRAS.

FEP provided common access to the suite of graphical editors. The fault tree and event tree
editors were accessible through FEP as well as through IRRAS, whereas the piping and
instrumentation diagram (P&ID) editor was only accessible through FEP. With these editors an
analyst could construct from scratch as well as modify fault tree, event tree, and plant drawing
graphical figures needed in a PRA.

Previous versions of SAPHIRE consisted of the suite of these modules. Taking advantage of the
Windows 95 (or Windows NT) environment, all of these modules were integrated into SAPHIRE
Version 6; more features were added; and the user interface was simplified. Version 6 was a
Windows NT version that became a released code in 1998. Version 7 is also a Windows NT (or
above) version that is currently the standard that is being used by the NRC.

Work began on a new version of SAPHIRE, Version 8, in 2004. Version 8 was designed to meet
current NRC program needs such as those related to SPAR model development, the
Significance Determination Process (SDP) program, the Risk Assessment Standardization
Project (RASP), as well as the Accident Sequence Precursor (ASP) Program. The development
of the SAPHIRE 8 version includes new features and capabilities. These features and
capabilities are related to working with larger, more complex models and improving the user-
friendliness of SAPHIRE’s interfaces while retaining key functionality of Version 7.

Version 8 is being developed to support the SPAR models and to run them as an integrated
model (e.g., Level 1 with external events). The graphical user interface has also improved from
SAPHIRE 7. A tailored interface for the SDP and the ASP programs has been developed. The
interfaces for the SDP, ASP, and general analysis introduce the concept of a “workspace” in
which the analyst may run and save different analyses. The use of workspaces enables the user
to separate the model construction from the model analysis.

This manual is designed to guide the user through the basic procedures necessary to enter
PRA data into the SAPHIRE program using SAPHIRE’s MAR-D ASCII-text (or “flat file”) data
formats. A simple sample database is presented in Section 3 that demonstrates the data
loading process. Where applicable, the discussion includes how the processes for loading the
sample database relate to the actual processes used to load a larger PRA or individual plant
examination (IPE) database. The procedures in the manual were developed for use with

3

SAPHIRE, Version 8, and may not apply to past or future versions. Procedures for version 6
and 7 are the same, except where noted. While this manual does provide guidance for
efficient and accurate data entry, it is not intended to stand-alone but is meant to supplement
existing documents. Therefore, this manual references the SAPHIRE User’s Guide, the
SAPHIRE Technical Reference Manual, and the SAPHIRE Tutorial as information sources.

1.2 Assumptions and Recommendations

We assume that the SAPHIRE software has been loaded as described in the SAPHIRE User’s
Guide. We assume that the user is knowledgeable in the use of SAPHIRE. We also assume
that the user has a basic level of knowledge concerning the use of event trees and fault trees in
a PRA.

It is recommended that the user read Sections 1 and 2 of the SAPHIRE User’s Guide. These
sections provide an overview of SAPHIRE with discussions concerning how to get around in the
program menus, and SAPHIRE database concepts. These concepts will be discussed only
briefly in Section 2 of this document.

4

5

2. OVERVIEW OF DATABASE CONCEPTS

2.1 SAPHIRE Database Unit - The Project

The SAPHIRE analysis structure is divided into projects. Since access to any SAPHIRE
database is obtained through the appropriate project, a project is the first thing that must be
created. A project is any grouping of fault trees and event trees with their associated basic
events, cut sets, reliability data, and descriptions. When a database project is created, a
corresponding Windows folder, usually located beneath the Saphire8 folder, is also created (this
assumes that SAPHIRE was installed in its default folder). When multiple projects are created,
it is necessary to select one project to work with at a time. The procedures for adding and
selecting a project in SAPHIRE are shown in Appendix A of this report.

SAPHIRE is structured so that major areas of functionality are grouped and accessed by main
menu options – this main window is called the Standard Analysis interface. These main menu
options will be referred to frequently throughout this manual. The main menu functions used
predominantly in data loading are

� File - options to create and select various projects.
� Generate - options to transfer base case event data to current case data.
� Fault Tree - options to create and modify fault tree logic, analyze and solve logic.
� Event Trees - options to create and modify event tree and sequence logic.
� Modify - options to edit descriptive and rate information, add and delete items.
� Utility - options to extract and load data using flat files.

2.2 File Management

There are several types of external files important to SAPHIRE for storing and accessing
database information. All files associated with a particular database are stored in the
subdirectory representing the project. The project subdirectory is typically found in the
SAPHIRE 8 Windows folder.

The external relation files reside in the project subdirectory and maintain the permanent
SAPHIRE interactive database. This type of data includes project, basic events, attributes, fault
trees, event trees, end states, accident sequences, etc. For each relation type, the following
relational files exist:

*.BLK
*.DAT
*.DFL
*.IDX

These file types should never be deleted unless the project is to be removed permanently from
the user’s hard drive.

6

In addition to the relation files, SAPHIRE can also produce external flat or ASCII files. These
can be extracted or loaded to or from any Windows project subdirectory using SAPHIRE
software. These flat files, grouped according to the type of data they contain, are listed in Table
1. In version 8, flat files can be extracted to any Windows folder, and can be loaded into the
current project from any Windows folder as well.

Once the data contained in the flat files have been entered into the SAPHIRE database, they
are stored permanently in the relation files. Therefore, flat files can be deleted to conserve disk
space and later extracted from the interactive database if necessary. For example, these flat
files may be used to verify data entry. Another important use of these MAR-D files is using an
extracted file as a template to add additional data to the database (i.e., via copy and paste type
of editing functions).

There are two methods to create flat files. The first is to enter data into the interactive database
using the Modify menu options. Once the data are entered manually, the flat files containing
this information can be extracted, as described in Appendix A. The second is to create and
enter data into an ASCII flat file with the correct format and file name (as shown in Appendix B).
These files can then be loaded into the database, as described in Appendix A.

SAPHIRE also produces external report files. Report options are available in many sections of
the software. The software allows the options to send reports to a printer, the computer screen,
or to a file on any directory. Version 8 provides additional report formats that are compatible
with major word processing software and browsers.

Note: Empty flat files can be extracted and serve as a template for the proper data entry
format. These templates are available for those files listed in Table 1.

While MAR-D files may be used to import and export information, they also may be used to
check information (e.g., by spell checking descriptions, by evaluating basic event probabilities).
In addition, SAPHIRE 8 has a “project check” option that is found under Tools � Check
Project that automates a variety of quality checks on the project information.

7

Table 1. SAPHIRE database file names and descriptions.

File name Description Applicable section in
this manual

ProjectName.FAD Project name and descriptions 4.2.3
ProjectName.FAA Project attributes 4.2.3
ProjectName.FAT Project text 4.2.3
ProjectName.FAY Project event tree post-

processing rules
-

ProjectName.FAS Project fault tree post-
processing rules

-

ProjectName.FAP Project end state partition rules

-

ProjectName.BED Basic event names and
descriptions

4.6.2

ProjectName.BEI Basic event failure rates 4.6.3
ProjectName.BEA Basic event attributes 4.6.3
ProjectName.BET Basic event transformation

information
-
-

ProjectName.BEC Basic event compound
information

-

ProjectName.BEN Basic event notes

-

ProjectName.BEG Basic event grade Appendix B
ProjectName.BECat Basic event categories Appendix B
ProjectName.FMD Failure mode descriptions (deprecated)
ProjectName.CTD Component type descriptions (deprecated)
ProjectName.STD System type descriptions (deprecated)
ProjectName.LCD Location descriptions (deprecated)
ProjectName.TTD Train descriptions

(deprecated)

ProjectName.FTD Fault tree names and
descriptions

4.5.2

FaultTree.FTT Fault tree text 4.5.2
ProjectName.FTA Fault tree attributes Appendix B
ProjectName.FTL Fault tree logic 4.5.1
ProjectName.FTC Fault tree cut sets 4.5.4
FaultTree.FTY Fault tree post-processing rules -
FaultTree.PID Fault tree P&ID

(deprecated)

EventTree.ETG Event tree graphics 4.3.1
ProjectName.ETD Event tree names and

descriptions
4.3.5

ProjectName.ETT Event tree text 4.3.5
ProjectName.ETA Event tree attributes Appendix B

8

EventTree.ETL Event tree logic 4.3.1
ProjectName.ETR Event tree rules 4.3.4
EventTree.ETY Event tree post-processing rules -
EventTree.ETP Event tree end state partition

rules
-

ProjectName.ESD End state names and
descriptions

4.4.3

ProjectName.EST End state text 4.4.3
ProjectName.ESC End state cut sets

-

ProjectName.SQD Sequence names and
descriptions

4.7.2

ProjectName.SQC Sequence cut sets 4.7.1
ProjectName.SQA Sequence attributes Appendix B
ProjectName.SQT Sequence text 4.7.2
ProjectName.SQL Sequence logic 4.3.6
ProjectName.SQY Sequence post-processing rules -
ProjectName.SQP Sequence end state partition

rules
-

ProjectName.GTD Gate description 4.5.3
ProjectName.GTA Gate attributes

4.5.3

ProjectName.CSD Change/flag set description 4.10.1/Appendix A
ProjectName.CSI Change/flag set information 4.10.1/Appendix A
ProjectName.CSA Change/flag set alternate names

-

ProjectName.HIA Histogram attributes -
ProjectName.HID Histogram descriptions -
ProjectName.HII Histogram information -
ProjectName.HIA Histogram alternate name

ProjectName.SLA Slice alternate names -
ProjectName.SLB Slice basic event logic -
ProjectName.SLD Slice description -
ProjectName.SLI Slice information (combo

importance values)
-

9

3. THE SAMPLE DATABASE

This section presents the sample database used to describe the data loading process in
Section 4. Section 3.1 presents the basic assumptions concerning use of this manual. Sections
3.2 through 3.9 contain the actual data and a discussion of the sample database.

3.1 The Sample Database

Several assumptions concern the presentation of the sample database:

1. The SAPHIRE software has been loaded as described in the SAPHIRE User’s Guide.

2. The user has a basic knowledge of using SAPHIRE to analyze event trees and fault

trees.

3. The user has read the sections of the SAPHIRE User’s Guide that provide an overview

of the use of the software and the program menus, modules, and database concepts.

In the SAPHIRE Tutorial (Volume 4), a simple example shows the quantification for the
frequency of an event tree. The tutorial describes (a) the basic construction of event tree and
fault trees, (b) entering basic event data, and (c) generation and quantification of both fault tree
and sequence cut sets. Sections 3.2 through 3.9 of this report present the sample database in
a fashion similar to that found in a typical PRA. However, unlike most PRAs, the sample
database contains only those data essential to constructing a workable database in SAPHIRE.

3.2 The Sample Database Event Tree

Using failure-success logic, we developed an event tree to calculate the frequency that a worker
will arrive on time, be late, or miss a day of work. The event tree (WORK) is shown in Figure 1.
It was determined that the average working person is required to work approximately 248 days
a year. In the WORK event tree, going to work was used as the initiating event (WORK).
Initiating events are occurrences in a certain length of time that initiate a sequence of events. In
this case, being required to get to work initiates the sequence of events leading to either getting
to work on time, being late to work, or missing work completely.

The first event that should occur on a normal workday is that the alarm clock rings. Therefore,
the first question to ask is "did the ALARM go off?" If it did not go off, then the worker will be
late to work. If the alarm successfully wakes the worker, then a personal reason (i.e., sickness)
may cause the worker to miss work. Therefore, the second question to ask is "did a
PERSONAL reason make the worker miss work?" Thus, the ALARM may be successful but a

10

PERSONAL reason may cause the worker to miss work. Now, either the alarm succeeded in
waking the worker or the alarm failed and the worker woke up late, and if no personal
circumstances cause the worker to miss work, then transportation problems may occur that
causes the worker to be even later to work. Therefore, the third question to ask is "did the
available transportation (TRNSPRT) fail?" Finally, if the alarm succeeded, no personal reasons
interfered, and transportation was available, then the worker will be successful in getting to work
on time.

Figure 1. Going-to-work (WORK) event tree

We assume that the probability of public transportation (represented by the top event
TRNSPRT) will change depending on the time that the person attempts to use this service. This
assumption implies that the probability of failing TRNSPRT is conditional on the time that the
service is needed. Therefore, if ALARM fails then it is necessary to substitute a different fault
tree or probability for the original TRNSPRT top event. The database has another new fault tree
called TRNS-2. This fault tree will contain a different probability for the basic event that
represents the failure of the public transportation fault tree when the demand for this service is
later than the normal time to get to work.

The first four names along the topmost horizontal line of this figure represent the initiating event
(WORK) and the top events (ALARM, PERSONAL, and TRNSPRT). Using the event tree in an
analysis will enable the top events to be linked together. Standard practice depicts the initiating
event as a horizontal line with fault trees connected in a branching structure, where an up
branch indicates success and the down branch indicates failure. As the event tree logic is
developed, a top event either can be passed (fault tree not questioned) or questioned (fault tree
either succeeds or fails). Therefore, each pathway through an event tree has a combination of
success, failure, or “pass” logic. This pathway of combinations is called a sequence. For
example, following through the WORK event tree, sequence three (SEQ 3) is described as the
success of ALARM, the failure of PERSONAL, and the pass of TRNSPRT.

WORK

Initiating event

ALARM

Alarm Failure

PERSONAL

Personal failure

TRNSPRT

Transportation failure # Endstate
(Phase - PH1)

1 OK

2 LATE-TO-WORK

3 MISS-WORK

4 LATE-TO-WORK

5 LATE-TO-WORK

11

3.3 The Sample Database Fault Trees

Each of the top events presented in the WORK event tree may be further developed as a fault
tree or fault tree logic. Fault tree analysis is a technique where many events (basic events) that
interact to produce a complex event (top event) can be related using logical relationships (AND,
OR, etc.). This process permits the methodical building of a structure that can be used to
analyze possible failures and to calculate the probability of failure. For this example, simple
fault trees (shown in Figures 2 through 5) were developed. These fault trees are used to
determine the probability of each top event occurring and to develop fault tree and sequence cut
sets.

The ALARM fault tree (Figure 2) is a representation of modeling alarm clock failure. Some
common reasons for alarm clock failure include setting the wrong time, failing to set the alarm,
mechanical failure, or power failure (either battery or commercial). The OR-gate ALARM has
three inputs, one OR-gate, one AND-gate, and one undeveloped event. The OR-gate ALARM-1
has two basic events as input representing the probability of setting the wrong time or failing to
set the alarm. Either of these events, the alarm being set to the wrong time [ALM-SWT (alarm-
set wrong time)] or the alarm not being set [ALM-FTS (alarm fail to set)], can fail the alarm
clock. The undeveloped event under the OR-gate ALARM, ALM-MECH (ALARM-mechanical
failure), will represent the probability of any of the mechanical functions associated with the
alarm failing. Any mechanical failure will prevent the alarm from performing its function. The
AND-gate ALARM-2 has two basic events as inputs representing the probability that power has
failed to the alarm. It is necessary that both the commercial power [ALM-CPF (alarm-
commercial power failure)] and the battery [ALM-BPF (alarm-battery power failure)] not work to
fail the alarm power.

The PERSONAL fault tree (Figure 3) is a simple representation modeling personal or human
failure that results in missing work. Two common reasons for failure include sickness or
sickness in family. There are also many additional reasons for personal failure that are less
common occurrences than sickness related failures. The OR-gate PERSONAL has three
inputs; two basic events and one undeveloped event. The two basic events will represent the
probability of either missing work due to being sick (SICK) or family illness [SICK-FAM (sickness
in family)]. The undeveloped event OTHER represents the probability that other personal
reasons are responsible for failure.

12

Figure 2. Alarm clock failure fault tree

Figure 3. Personal problems fault tree

ALARM

Alarm Failure

ALARM-1

Alarm clock setting failure

5.50E-03ALM-FTS

Alarm fails because w orker

2.70E-03ALM-SWT

Alarm fails because w orker
set the w rong time

ALARM-2

Alarm clock pow er failure

9.00E-04ALM-BPF

Alarm fails due to battery

1.50E-02ALM-CPF

Alarm fails due to
commercial pow er failure

2.70E-04ALM-MECH

Alarm fails due to
mechanical failure

PERSONAL

Personal failure

5.00E-01OTHER

Other personal reasons that
cause a failure to get to

w ork
8.10E-03SICK

Failed to get to w ork
because of illness

4.00E-03SICK-FAM

Failed to get to w ork
because of illness in family

13

Figure 4. Transportation failure fault tree (normal time frame)

Figure 5. Transportation failure fault tree (late time frame)

The third fault tree TRNSPRT (Figure 4) is a simple representation modeling transportation
failure. Two common modes of transportation include personal (such as a car) and public (such
as a bus or train). The AND-gate TRNSPRT has two basic events as inputs. The two basic
events will represent the probability of public transportation [PUB-TRNS (public transportation)]
and personal transportation [ER-TRNS (personal transportation)] failure.

An additional fault tree TRNS-2 (Figure 5) is a modification of the TRNSPRT fault tree. Since
the probability of obtaining public transportation is dependent upon the time of day, this fault
tree is a representation modeling transportation at a time later than normal. In this situation, the

TRNSPRT

Transportation failure

5.50E-03PER-TRNS

Personal transportation fails

2.70E-03PUB-TRANS

Public transportation fails

TRNS-2

Commercial transportation
fails at a later time

5.50E-03PER-TRNS

Personal transportation fails

2.00E-03PUB-TRNS-LATE

Public transportation fails
late time frame

14

probability of public transportation failing is less due to the lower demand. Then, if ALARM fails,
the worker needs public transportation later than if the ALARM had succeeded. In this scenario,
it is necessary to substitute a fault tree for the TRNSPRT top event (TRNS-2) that contains the
probability of failure of the public transportation fault tree in a later period.

3.4 The Sample Database Basic Events

Information on the basic event values and descriptions for the sample problem is provided in
Table 2 and Table 3. The table provides the necessary basic event and initiating event
information to duplicate the analysis performed on this problem. Typically, PRAs contain more
basic event information (e.g., fault tree type, failure mode) that will need to be entered into the
database to complete the analysis. Note that the uncertainty value contained in Table 2 is the
lognormal distribution error factor.

Table 2. Basic event values for the sample problem.

Basic event Distribution type Calculation type Mean value Uncertainty value
(error factor)

ALM-BPF Lognormal 1 9.0E-4 3

ALM-CPF Lognormal 1 1.5E-2 3
ALM-FTS Lognormal 1 5.5E-3 10
ALM-MECH Lognormal 1 2.7E-4 3
ALM-SWT Lognormal 1 2.7E-3 10
MEDICINE Lognormal 1 8.1E-3 5
OTHER Lognormal 1 5.0E-1 10
PER-TRNS Lognormal 1 5.5E-3 3
PUB-TRNS Lognormal 1 2.7E-3 3
PUB-TRNS-LATE Lognormal 1 2.0E-3 3
SICK Lognormal 1 8.1E-3 10
SICK-FAM Lognormal 1 4.0E-3 10
WORK Lognormal 1 2.48E+2/yr 10

15

Table 3. Basic event descriptions for the sample problem.

Basic event Description

ALM-BPF Alarm fails due to battery failure

ALM-CPF Alarm fails due to commercial power failure

ALM-FTS Alarm fails because worker failed to set alarm

ALM-MECH Alarm fails due to mechanical failure

ALM-SWT Alarm fails because worker set wrong time

MEDICINE Recovery for sickness preventing attending work

OTHER Other personal reasons that cause a failure to get to work

PER-TRNS Personal transportation

PUB-TRNS Public transportation fails

PUB-TRNS-LATE Public transportation fails late time frame

SICK Failed to get to work because of illness

SICK-FAM Failed to get to work because of illness in family

WORK Event tree (WORK) initiating event

Since the sample database is simplified compared to traditional PRA databases, no external
event analysis features are covered. Consequently, fire, flood, and seismic analysis are not
directly addressed by way of the sample database. However, additional model types simply
result in additional objects (such as basic events) appearing in the MAR-D file, for example if a
basic event DG-B were assigned to RANDOM, FIRE, and FLOOD model types, the in the basic
event information (.BEI) file we would see (notionally):

* Name ,FdT,UdC,UdT, UdValue , Prob , … Analysis Type , Phase Type
DG-B , 1, 6 , L, 1.000E+001, 2.000E-002, … , RANDOM ,
DG-B , 1, , , 3.000E+000, 2.000E-002, … , FIRE ,
DG-B , 1, , , 3.000E+000, 2.000E-002, … , FLOOD ,

16

3.5 Sample Database Fault Tree Cut Sets

The fault tree cut sets and minimal cut set (mincut) upper bound for those fault trees contained
in the sample database are shown in Table 4. The fault tree modeling of "personal failure due
to sickness and other reasons" has the greatest probability of occurring.

Table 4. Fault tree cut set results.

Fault Tree: ALARM
Mincut Upper Bound: 2.705E-3

 Cut
No.

 Total
(%)

 Set
(%)

 Probability Cut sets

 1 99.8 99.8 2.7E-3 ALM-SWT
 2 100.0 0.2 5.5E-6 ALM-FTS
 3 100.0 0.0 2.7E-8 ALM-MECH
 4 100.0 0.0 1.3E-9 ALM-BPF, ALM-CPF

Fault Tree: PERSONAL
Mincut Upper Bound: 2.007E-2

 Cut
No.

 Total
(%)

 Set
(%)

 Probability Cut sets

 1 40.3 40.3 8.1E-3 OTHER
 2 80.7 40.3 8.1E-3 SICK
 3 100.0 19.9 4.0E-3 SICK-FAM

Fault Tree: TRNS-2
Mincut Upper Bound: 1.100E-5

 Cut
No.

 Total
(%)

 Set
(%)

 Probability Cut sets

 1 100.0 100.0 1.1E-5 PER-TRNS, PUB-TRNS-
LATE

Fault Tree: TRNSPRT
Mincut Upper Bound: 1.485E-5

 Cut
No.

 Total
(%)

 Set
(%)

 Probability Cut sets

 1 100.0 100.0 1.4E-5 PER-TRNS, PUB-TRNS

17

3.6 Sample Database Sequence Cut Sets

Shown in Table 5 are the cut sets and frequencies for the sequences from the WORK event
tree. Since Sequence 1 represents successfully getting to work, it is not presented. Sequence
3 is the largest and only contributor to missing work. Sequence 4 is the largest contributor to
being late-to-work.

 Table 5. Sequence cut set results.

Sequence: 2 (calculated frequency = 3.68E-3/yr)

 Cut set Frequency Cut set
 1 3.7E-3 WORK, PER-TRNS, PUB-TRNS

Sequence: 3 (calculated frequency = 3.99/yr)

 Cut set Frequency Cut set
 1 2.0E+0 WORK, OTHER
 2 1.0E+0 WORK, SICK, MEDICINE
 3 9.9E-1 WORK, SICK-FAM

Sequence: 4 (calculated frequency = 6.71E-1/yr)

 Cut set Frequency Cut set
 1 6.7E-1 WORK, ALM-SWT
 2 1.4E-3 WORK, ALM-FTS
 3 6.7E-6 WORK, ALM-MECH
 4 3.3E-7 WORK, ALM-BPF, ALM-CPF

Sequence: 5 (calculated frequency = 7.38E-6/yr)

 Cut
set

 Frequency Cut set

 1 7.4E-6 WORK, ALM-SWT, PER-TRNS, PUB-TRNS-LATE
 2 1.5E-8 WORK, ALM-FTS, PER-TRNS, PUB-TRNS-LATE
 3 7.4E-11 WORK, ALM-MECH, PER-TRNS, PUB-TRNS-LATE
 4 3.7E-12 WORK, ALM-BPF, ALM-CPF, PER-TRNS, PUB-TRNS-

LATE

18

3.7 Sample Database Post-processing Actions

Sequence 3 shown in the sequence cut set list in Table 5 accounts for most of the days lost at
work (4.0 times per year). Notice that a basic event, MEDICINE, has been added to the cut set
containing sick. It was anticipated that 50% of the time it might be possible that an individual
will take medicine and feel well enough to attend work. MEDICINE is a post-processing or
recovery action added after the sequence cut set generation.

3.8 Sample Database Uncertainty

The following tables (Table 6 to Table 8) summarize the sequence, fault tree, and end state
uncertainty. All uncertainties were performed using a Monte Carlo simulation with 1,000
samples (using seed 123). Table 6 lists the uncertainty results for the fault trees, Table 7 lists
the uncertainty results for each of the sequences, while Table 8 lists the uncertainty results for
the end states.

Table 6. Fault Tree uncertainty values report.

Fault
Tree

Mean Min. Cut
Upper
Bound

Median Std. Dev. 5th % 95th % Minimum Maximum

ALARM 2.62E-03 2.71E-03 9.80E-04 5.09E-03 1.20E-04 1.05E-02 1.97E-05 6.27E-02
PERSONAL 1.97E-02 2.01E-02 1.26E-02 2.37E-02 2.75E-03 5.81E-02 3.61E-04 2.37E-01
TRNS-2 1.07E-05 1.10E-05 5.31E-06 1.70E-05 7.18E-07 3.61E-05 1.42E-07 2.15E-04
TRNSPRT 1.44E-05 1.49E-05 7.16E-06 2.29E-05 9.69E-07 4.87E-05 1.92E-07 2.90E-04

Table 7. Sequence uncertainty values report.

Event
Tree
Seq

Mean Min. Cut
Upper
Bound

Median Std. Dev. 5th % 95th % Minimum Maximum

WORK 2 3.83E-03 3.68E-03 1.67E-03 7.10E-03 2.14E-04 1.53E-02 6.50E-06 1.22E-01
WORK 3 3.46E+00 3.99E+00 1.96E+00 4.88E+00 3.62E-01 1.10E+01 5.85E-02 6.80E+01
WORK 4 7.42E-01 6.71E-01 2.32E-01 2.05E+00 2.15E-02 2.73E+00 1.43E-03 2.84E+01
WORK 5 6.73E-06 7.38E-06 1.26E-06 1.94E-05 5.33E-08 3.02E-05 8.89E-10 2.78E-04

19

Table 8. End state uncertainty values report.

End State Mean Min. Cut
Upper
Bound

Median Std. Dev. 5th % 95th % Minimum Maximum

LATE-TO-
WORK

6.84E-01 6.75E-001 2.47E-01 1.49E+00 2.29E-02 2.56E+00 1.21E-3 2.21E+01

MISS-WORK 3.46E+00 3.99E+000 1.96E+00 4.88E+00 3.62E-01 1.10E+01 5.85E-2 6.80E+01

3.9 Sample Database Importance

The following is a report on the Fussell-Vesely importance measure for each basic event over
the total end-state database analysis. Table 8 shows the results of the importance analysis for
the sample database.

Table 9. Results of sample database importance analysis.

Basic Event Number of
Occurrences

Probability Fussell-Vesely Risk
Reduction
Ratio

Risk
Increase
Ratio

WORK 12 2.480E+02 1.000E+00 ----------- 4.032E-03
OTHER 1 8.100E-03 4.276E-01 1.747E+00 5.337E+01
MEDICINE 1 5.000E-01 2.129E-01 1.271E+00 1.213E+00
SICK 1 8.100E-03 2.129E-01 1.271E+00 2.708E+01
SICK-FAM 1 4.000E-03 2.103E-01 1.266E+00 5.337E+01
ALM-SWT 2 2.700E-03 1.437E-01 1.168E+00 5.408E+01
PER-TRNS 5 5.500E-03 7.919E-04 1.001E+00 1.143E+00
PUB-TRNS 1 2.700E-03 7.904E-04 1.001E+00 1.292E+00
ALM-FTS 2 5.500E-06 2.919E-04 1.000E+00 5.408E+01
PUB-TRNS-LATE 4 2.000E-03 1.584E-06 1.000E+00 1.001E+00
ALM-MECH 2 2.700E-08 1.433E-06 1.000E+00 5.408E+01
ALM-CPF 2 1.500E-02 7.166E-08 1.000E+00 1.000E+00
ALM-BPF 2 9.000E-08 7.166E-08 1.000E+00 1.796E+00

21

4. LOADING THE SAMPLE DATABASE

4.1 Introduction

This section describes the process of loading the sample database presented in Section 3. The
section is organized to reflect the methodology that has proven useful while working with actual
PRA data. The section organization is as follows:

Section 4.2 Flat File Data Importing/Exporting

Section 4.2 Adding and Selecting the Database Project

Section 4.3 Loading the Event Tree Data

Section 4.4 Entering End State Data

Section 4.5 Loading the Fault Tree Data

Section 4.6 Loading Basic Event Data

Section 4.7 Loading Sequence Data

Section 4.8 Actions

Section 4.9 Analyzing Uncertainty

Each section presents methods used for entering a specific type of data (there may be several
methods possible). The merits of each data entry method are discussed and a brief overview of
the actual steps used to enter the data using this method is presented. Manuals and guides
that may add useful information to the method are also cited. Note that the MAR-D files
associated with the sample database are fully listed in Appendix C.

Flat File Data Importing/Exporting

Most project data can be imported or exported using specific flat file formats, ether for the entire
project or in sections. This may be useful to create template of common data for similar
projects. Each of the following sections gives the flat file extension and formatting. To learn
how to import, export or edit these sections, see Appendix A.

22

4.2 Adding and Selecting the Database Project

The necessary first step in loading a database is adding and/or selecting the project that will
contain the database. Adding and selecting the database project includes

 1. Adding the project (Section 4.2.1)
 2. Selecting the project (Section 4.2.2)
 3. Entering project information and text (Section 4.2.3)
 4. Extracting and verifying the project flat files (Section 4.4.4).

4.2.1 Adding the Project

The SAPHIRE database structure is divided into projects. Since access to the SAPHIRE
interactive database is obtained through the appropriate project, a project is the first thing that
must be added. A project is any logical grouping of fault trees and event trees with their
associated basic events, cut sets, reliability data, and descriptions. The project concept allows
for the separation of any number of distinct databases. When a database project is created in
one of the SAPHIRE programs, a corresponding named Windows subfolder is also created in
the specified project location. All files for this project will consequently be added to this folder.

To add a project while in an existing project, from the main menu select (File � New �
Project). If there no previously opened project then the opening window has a Create New
Project option. The procedure is shown in detail in Appendix A. The procedure requires giving
the project a name and assigning the project to a folder.

4.2.2 Selecting the Project

Once a project has been added, it is automatically selected as the current project. It will remain
the current project until you select a different one. The procedure to select a project is shown in
detail in Appendix A.

The procedure requires selecting (File � Open Existing Project) from the menu option,
navigating to the desired project folder, and selecting the project file name located in the project
folder or a zipped project.

4.2.3 Entering Project Information, Description, and Text

Project description, information, and text can be entered into the database when the project is
open. To add the project description (“This is a sample database”) or the project notes ("A
simple example that models the probability of getting to work on time"), choose the (Project �
Modify) option from the SAPHIRE main menu to open the Edit Project dialog. Project
information that can be stored using this option includes name, description, creator, creation
date, IE frequency units, facility location, version, notes. These fields and names of the fields
are user definable (for example, “Company” may be renamed to “Vendor”).

23

Figure 6. Modify Project dialog

Below are the available methods for entering project information, description, and text.

Interactive Modify Project Method
The first step is to use the interactive database to enter the data. The procedure for using the
interactive database is described above.

Load from Project Flat Files Method
Second, the project information can be extracted or imported .FAA, .FAD and .FAT. The
procedure for using extracted flat files is as follows:

1. Extract the project files, .FAA, FAD, and .FAT (the extract and load processes are

described in detail in Appendix A).

2. Use an editor to modify and add the project data to the extracted files. A detailed
description of the flat file format is available in Appendix B.

3. Load the finalized files back into the interactive database. The interactive database
should now contain the project data.

24

4.2.4 Extracting and Verifying the Project Data

It is often necessary to verify that data items are accurate. The SAPHIRE flat files are
particularly useful for this task. The flat files extracted from the sample database (shown in
Table 11) can be used to verify the project information entered in the interactive database.
Notice that not all the possible entry fields (e.g., Design) have been filled. Many options are
provided in SAPHIRE that may not be applicable to every database, and, subsequently, some
areas may be blank.

Table 10. Extracted project flat files.

File Extracted file information
.FAA

SAMPLE =
* Name , Mission, NewSum, Company, Location, Typ, Design, Vendr, Arch Eng, OpDate,
QualDate
SAMPLE, 2.400E+001,-----E---, , , , , , , ,----/--/--

.FTD

SAMPLE ,

.FAT

SAMPLE =

Table 11. Extracted project flat files for the sample project.

File Extracted file information
.FAA

SAMPLE =
* Name , Mission, NewSum, Company, Location, Typ, Design, Vendr, Arch Eng, OpDate,
QualDate
SAMPLE , 2.40E+001, -----E---, STANDARD, HOMETOWN , , , , ,----/--/--,----/--/--

.FTD

SAMPLE ,This is sample data base

.FAT SAMPLE =
 A simple example that models the probability of getting to work on time.

4.3 Loading the Event Tree Data

The next step in loading a database is to enter the database event trees and verify their
accuracy. The event-tree data entry is complicated by the fact that the SAPHIRE software uses
an interactive database. Information entered during the process of graphical event tree
construction will appear in other areas of the program.

25

Those event trees that contain an initiating event will be listed in the Event Tree listing on the
left side of the main window as long as the list filter is “Main Trees”. An event tree without an
initiating event will be included in the event tree list only when the “Sub Trees” filter is selected.
(See Appendix A for more info on showing/hiding item lists and item list filters.)

Top events can be found in the Fault Tree Listing with a filter of “Main Trees”. Top events are
also listed in the Basic Event Listing when filtered by “Developed Event”, and initiating events
with their corresponding “Initiator” filter. The information in any of these internal lists can
subsequently be extracted into SAPHIRE flat files.

It is not necessary to enter the event trees at this point, but it has proved to be the most efficient
method for entering PRAs. The sample database event tree to be loaded is shown in Figure 7.

Figure 7. Going to work event tree graphic

TRNSPRT

Transportation
failure

PERSONAL

Personal
failure

ALARM

Alarm
failure

WORK

Initiating
event

END-STATE

 1 OK

 2 LATE-TO-WORK

 3 MISS-WORK

 4 LATE-TO-WORK

 5 LATE-TO-WORK

26

The process of loading an event tree includes:

1. Entering the event tree structure (Section 4.3.1)

2. Entering sequence names in graphics (Section 4.3.2)

3. Entering top event descriptions (Section 4.3.3)

4. Entering event tree descriptions and text (Section 4.3.4)

5. Entering link (substitution) rules (Section 4.3.5)

6. Generating and verifying the event tree logic (Section 4.3.6)

4.3.1 Entering the Event Tree Logic
In the sample database, event tree logic is used as the basis for linking system fault trees and
generating sequence logic to generate sequence cut sets. Some types of databases may not
use event trees, but they are typically used to varying degrees in PRA methodology. SAPHIRE
was originally designed to handle the more common type of approach, the large fault tree/small
event tree approach, represented by the sample database. Other databases may use the large
event tree/small fault tree approach. SAPHIRE can also handle the large event tree type of
database. Note that SAPHIRE does not accept other software’s event tree graphics; therefore,
each event tree will have to be created individually.

Below are the available methods for entering the event tree logic.

Event Tree Graphical Editor Method
The most efficient method to load event tree logic is to enter the event tree structural information
into SAPHIRE in the event tree graphical editor. It is straightforward to enter event tree logic
into the graphical editor. The process of entering and saving an event tree similar to the sample
database is discussed in detail in the SAPHIRE Tutorial. Most items can be edited by both
double clicking on the items or by having the quick edit on and just selecting the desired item to
edit.

To create a new event tree you (a) double click “New event tree” in the Event Tree Listing (b)
enter the event tree properties Name, Description, etc. (c) add the event tree structure, as
shown in Figure 7, by selecting the desired button for adding branches or tops.

Load from Event Tree Logic Flat File Method
It is possible, but may be difficult, to enter the event tree graphic logic into a flat file and then
load this file into SAPHIRE. As the development of the small WORK event tree is presented in
the following sections, it will be obvious that the more highly branched the event tree becomes,
the more confusing the resulting logic. Therefore, this method is not discussed.

27

Once an event tree is created, any of the flat files for this tree can be extracted. The flat files
that will contain data are the event tree graphics (.ETG) and the event tree logic (.ETL) shown in
Table 12. These two files are identical in SAPHIRE.

Table 12. Extracted event tree flat files (with logic and sequence names only).

Files Extracted file information
.ETG

and

.ETL

SAMPLE, WORK, WORK =
^WINVER2.1
^PHASES 1 5 1 //# phases defined, max count sequences, initial phase
PHASE_1 16155777 Phase 1
^TOPS
ALARM, PERSONAL, TRNSPRT
^LOGIC 1 // initial phase, following are offset
 +1.0 +2.0 +3.0
 -3.0
 -2.0 3.0
 -1.0 2.0 +3.0
 -3.0
^SEQUENCES 0 // offset from initial phase
N, Endstate, N, Sequence Name, N, Frequency, N, Extra,
Y, , Y, OK, Y, , Y, , ,
Y, , Y, LATE-TO-WORK, Y, , Y, , ,
Y, , Y, MISS-WORK, Y, , Y, , ,
Y, , Y, LATE-TO-WORK, Y, , Y, , ,
Y, , Y, LATE-TO-WORK, Y, , Y, , ,
^ENDSEQUENCES //Now postprocess end names
^TOPDESC
^TEXT
^PARMS
^EOS

Note:
� When saving an event tree graphics file, verify that the file name is the same name as

the desired event tree name.
� Remember that event trees cannot transfer to the middle of other event trees.
� When possible, for ease of identification, identify initiating events by prefixing their

names with the letters IE; for example, IE-xx.
� Give all event trees unique names for identification and tracking. It may be useful to

include the project name, the event tree name, and the document-related page
number.

4.3.2 Entering Sequence Names in Graphics

Event tree sequence names are blank by default. Although the user can modify these names,
they are merely placeholders for editing purposes, and will not be used further in any form by
SAPHIRE, whether renamed by the user or not. Therefore, it is not recommended that the user
modify sequence names. The sequence name is contained in the .ETG file. Table 13 shows the
event tree graphics flat files that include named sequences (A, B, C, etc) under the flag
“^SEQUENCES”.

28

Sequences for an event tree are not created until the event tree/sequence logic has been
linked. The linking step occurs after the event tree logic has been created and will be discussed
in a later section. SAPHIRE generates a different, unique name for each event tree sequence
when the logic is linked. Event tree sequences are shown in the Event Tree List under their
parent event tree.

4.3.3 Entering Top Event Descriptions

Descriptions of top events are commonly found, as was shown in Figure 7. They normally
appear above the top event designator. Top event descriptions can either be added in the
graphics editor by double clicking the Top or using the quick edit. In depth procedures for
adding top event descriptions using the graphics editor is provided in the SAPHIRE Tutorial.

The (.ETG or ETL) file also contains the Sequence names and can be modified before
importing. Table 13 shows the event tree graphics flat files that include the top event
descriptions under the flag “^TOPDESC”.

Table 13. Event tree file (with logic, sequence, end state name, and top event
descriptions).

File Extracted file information
.ETG

and

.ETL

SAMPLE, WORK, WORK =
^WINVER2.1
^PHASES 1 5 1 //# phases defined, max count sequences, initial phase
PHASE_1 16155777 Phase 1
^TOPS
ALARM, PERSONAL, TRNSPRT
^LOGIC 1 // initial phase, following are offset
 +1.0 +2.0 +3.0
 -3.0
 -2.0 3.0
 -1.0 2.0 +3.0
 -3.0
^SEQUENCES 0 // offset from initial phase
N, Endstate, N, Sequence Name, N, Frequency, N, Extra,
Y, A, Y, OK, Y, , Y, , ,
Y, B, Y, LATE-TO-WORK, Y, , Y, , ,
Y, C, Y, MISS-WORK, Y, , Y, , ,
Y, D, Y, LATE-TO-WORK, Y, , Y, , ,
Y, E, Y, LATE-TO-WORK, Y, , Y, , ,
^ENDSEQUENCES //Now postprocess end names
^TOPDESC
"Initiating event"
!
"Alarm Failure"
!
"Personal failure"
!
"Transportation failure"
!
^TEXT
^PARMS
^EOS

29

Entering Event Tree Descriptions and Text

Many PRAs contain descriptions and extensive text concerning the event trees in the analysis.
The sample database has an event tree description (WORK EVENT TREE) and text for
demonstration purposes. Table 14 shows the extracted files for the description and text.

Below are the available methods for entering event tree descriptions and text.

Interactive Modify Event Trees Method
Event tree descriptions and name can be changed in the graphic editor by Edit � Properties
option. This is perhaps the easiest method since there are usually a limited number of event
trees and it is done entirely within the SAPHIRE environment. Though it may be slower than the
other method discussed here, it is recommended for most situations. Procedures for adding
descriptions and text are in the SAPHIRE User’s Guide.

Load from Event Tree Description Flat File Method
Using a text editor, the description data can be entered into the extracted event tree description
flat file (.ETD). The event tree textual data can also entered into the event tree text flat file
(.ETT) the same way. After modification or development, both files must be imported as
described in Appendix A.

 Table 14. Extracted event tree description and text flat files.

File Extracted file information
.ETD SAMPLE =

WORK ,WORK EVENT TREE

.ETT SAMPLE, WORK=
A FAIL-SUCCESS LOGIC WAS USED TO DEVELOP AN EVENT TREE TO CALCULATE THE FREQUENCY
 THAT THE AVERAGE PERSON WILL ARRIVE ON TIME, BE LATE OR MISS A DAY OF WORK.

4.3.4 Entering Link (Substitution) Rules
Substitutions of different fault trees or top event probabilities are very commonly used in event
tree logic. In this sample problem, for example, there may be a different probability of failure for
the transportation, depending on whether the alarm succeeds or fails. As discussed in Section
3, this is due to the increased availability of later public transportation. SAPHIRE uses link rules
to allow substitutions of event tree top events. Table 15 shows the ETR file.

Link Rule Editor Method
Link rules can be added or modified through a right click option in the Event Trees Listing (Edit
Linkage Rules). This is the most straightforward and simplest way to edit the rules.

The procedure for entering the link rules is to (a) select the desired event tree, (b) right click and
select the “Edit Linkage Rules” option, (c) once the rule editor is open, enter the desired rule text

30

(d) select compile, (e) if it compiles save and exit otherwise fix any problems repeat from step d.
Note that the text for the rules may be imported and exported directly from the editor (via File �
Import or File � Export, respectively).

Load from Event Tree Link Rule Flat File Method
Link rules can also be entered into an event tree rule flat file using the SAPHIRE format. After
the file is developed, it is necessary to load this file. (The loading procedure is discussed in
Appendix A.) This method may be the fastest (particularly with a large group of rules) but
requires more substantial steps and is prone to errors since the rule information needs to be
reloaded and a compile check is not done while adding. Note that once a rule has been entered
for an event tree, the .ETR flat file can be extracted for use as a template for subsequent rules.

 Table 15. Extracted event tree rules flat file.

File Extracted file information
.ETR SAMPLE, WORK=

| rule to substitute TRNS-2 for TRNSPRT
if ALARM then
 TRNSPRT = TRNS-2;
endif

4.3.5 Generating and Verifying Event Tree Logic

Basic event tree logic is verified using either the graphics visual picture or by linking trees to
generate sequence logic and examining the results of the sequence generation process. We
recommend that both these processes be performed after creating an event tree and entering
all the associated data. The sequence logic flat file is shown in Table 16. The methods
discussed below allow verification of all the data entered, as described in the previous section.

Below are the available methods for generating and verifying event tree logic.

Review Graphical Output Method
A graphical output can be obtained for each event tree. This graphic output can be sent directly
to a printer, or to a Windows metafile (WMF), or bitmap (BMP) file. Note that the graphical
output can be verified as accurate, but any link rules will need to be examined.

The procedure for obtaining a copy of the event tree graphic requires you (a) enter the event
tree graphical editor, (b) select (File � Export Image) option from the main menu. To print or
save multiple event trees at once, (a) select (Publish � Event Tree Report) main menu option,
(b) select the graphics option, then (c) select the desired format and (e) press the publish
button.

31

Link Trees Method
In the process of linking trees, sequence logic will be generated, and event tree logic can be
verified. This process produces the sequence logic that will be used by the interactive database
to produce sequence cut sets.

The procedure for generating sequences and obtaining a printout for verification requires the
following:

1. From the main window, select the event tree(s) to link from the Event Trees list.

2. Right Click.

3. Choose the Link option to open the Event Tree Link Parameters dialog.

4. Select the “Create Report” checkbox to Send Report to Screen and choose OK.

The report will be similar to one shown in Table 16.

 Table 16. Extracted sequence logic flat files.

File Extracted file information
.SQL SAMPLE, WORK, 2=

/ALARM /PERSONAL TRNSPRT .
^EOS
SAMPLE, WORK, 3=
/ALARM PERSONAL .
^EOS
SAMPLE, WORK, 4=
ALARM /TRNS-2 .
^EOS
SAMPLE, WORK, 5=
ALARM TRNS-2 .

Figure 8. Sequence generation logic report

32

4.4 Entering End State Data

This section describes entering the end state data so that end state data is included in both the
graphics and analysis portion of SAPHIRE. The following steps must be performed to actually
load and verify the end state data:

 1. Entering end state names in graphics (Section 4.4.1)

 2. Entering end states for analysis (Section 4.4.2)

 3. Entering the end state description and text (Section 4.4.3).

4.4.1 Entering End State Names in Graphics

End state data are used in a PRA analysis to group sequences that have similar outcomes for
subsequent entry into the level 2 analysis. The sample database has four sequences that are
grouped into two end states (late-to-work and miss-work). A subsequent analysis is possible on
these two end states. Two flat files that can be obtained that contain end state data are shown
in Table 17.

Table 17. Extracted end state flat files.

File Extracted file information
.ESD SAMPLE =

LATE-TO-WORK , This end state represents being late to work
MISS-WORK , This end state represents missing work

.EST SAMPLE, LATE-TO-WORK=
THIS IS THE LATE TO WORK END STATE

Below are the available methods for entering end state names in graphics:

Event Tree Graphical Editor Method
End state names may be entered in the graphics editor. Using the graphics editor is potentially
the most time-consuming but the most straightforward method. In this case, the event tree
could be finalized and files extracted without any intermediate step. The event tree logic flat files
shown in Table 16 contain end state names. In depth procedures for adding end state and
sequence names using the graphics editor is provided in the SAPHIRE Tutorial.

The procedure for entering the end state name in the graphics editor requires the following:

1. Opening the event tree graphical editor (double click the event tree from the list on the

main window).

33

2. Double clicking sequence/end state to bring up the Edit Sequence dialog.

3. Typing in the end state name.

4. If the end state name column is not shown, select View � End State Names from the

editor menu.

4.4.2 Entering End States for Analysis

Like sequences, even though the end state names may appear in the graphics, they will not be
available for analysis until the event tree’s sequences are linked. Unlike sequences, the
assigned end state names will be preserved.

4.4.3 Entering End State Description and Text

Descriptions and text associated with event tree end states can also be entered, though it is
unnecessary for analysis. Below are the available methods for entering end state description
and text.

Load from End State Flat Files Method
This data can be entered into the end state flat file (.ESD and/or .EST extracted from the
SAPHIRE program), using a text editor. After modification, the files must be loaded as
described in Appendix A. This method is not discussed further.

4.5 Loading the Fault Tree Data

This section describes loading the database fault trees and associated data and verifying their
accuracy. Again, it may be more appropriate to enter data in a different order, depending on the
type of data. For nuclear power plant PRAs, the order of data loading presented in this manual
has been found to be the most efficient. Fault trees are used in PRAs to represent system
failure logic. The sample database has four fault trees, each representing a different top event
in the event trees as shown in the figures from Section 3.

The SAPHIRE software can build the graphical fault tree using the fault tree logic (.FTL). It will
recognize and place into the fault tree graphic (1) the fault tree description (as found in the .FTD
file), (2) the descriptions of any basic events used in the logic (as found in the .BED file), and (3)
all gate descriptions used in the logic (as found in the .GTD file). If, at the time of conversion,
this information is not loaded into the interactive database, SAPHIRE will use default names or
blanks. The process to export fault tree data is provided in Appendix A.

Note:

� Exporting logic from the fault tree editors “Export Logic” menu option does not export
any basic event info. To get all the information needed for importing use the
load/extract option described in Appendix A.

34

� Fault tree, basic event, and gate descriptions will not appear in the graphics text

boxes (the default is blank) if the appropriate data have not been loaded into the
database from the appropriate file.

There are four methods to develop fault tree graphics that represent the logic, depending on
whether the data is available electronically or in hardcopy.

1. If hard copy data is available that contains the fault tree structure in graphics form, use

the SAPHIRE fault tree graphical editor to create the logic given in the hard copy. (see
SAPHIRE the help file for more details)

a. Use the SAPHIRE fault tree graphical editor to add the basic event and gate

names and descriptions as discussed in the SAPHIRE help file.

b. Extract the necessary flat files to enter the basic event descriptions (.BED), fault
tree descriptions (.FTD -Section 4.5.2), and gate descriptions (.GTD - Section
4.5.3). Load these modified files using the load option (Appendix A) to enter the
data into the graphics.

2. If hard copy data contain the fault tree structures defined as logic,

a. Use a text editor to enter the logic in the fault tree logic file (.FTL) format.

b. Use a text editor to develop files that contain the basic event descriptions (.BED),
fault tree descriptions (.FTD - Section 4.5.2), and gate descriptions (.GTD -
Section 4.5.3) in the correct formats.

c. Load these files into SAPHIRE (see Appendix A for the procedure.)

3. If electronic data contain fault tree logic structures that are compatible with SAPHIRE,

directly load the files into SAPHIRE.

4. If electronic data contains a fault tree defined as logic that is not compatible with

SAPHIRE,

a. It may be possible to convert these files into a form that can be entered directly
into SAPHIRE using programming (e.g., BASIC, Fortran, C) or an editing tool
with a macro language (e.g., Excel). This requires either editing and/or
programming skills that are beyond the scope of this manual. If it is not possible
to develop a program to convert the files, it may be possible to use available hard
copy graphics or print out logic and use the methods discussed above to enter
the data.

The following steps must be performed to actually load and verify all the fault tree data.

1. Entering the fault tree logic (section 4.5.1).
2. Entering the fault tree descriptions and text (section 4.5.2).

35

3. Entering the gate descriptions and attributes (section 4.5.3).
4. Generating fault tree cut sets (section 4.5.4).

4.5.1 Entering Fault Tree Logic

The fault tree data entry is complicated by the fact that SAPHIRE uses an interactive database.
Information entered in the process of graphical fault tree construction is used in many areas of
the program. Graphical data structure translated into logic and other information are entered
into the interactive database using internal lists. Such information includes the type of gates
and basic events used, the textual descriptions entered in gate and basic event boxes, and the
textual descriptions added for a fault tree description. The information on these internal lists can
subsequently be extracted into SAPHIRE flat files. Conversely, SAPHIRE can be used to build
fault tree graphics from logic and descriptions entered in the database.

Note: The graphics file is translated into internal fault tree logic. Because of entering the
fault tree graphics, the .FTL, .FTD, .GTA, and .GTD (fault tree logic, fault tree description,
fault tree gate attributes, and fault tree gate descriptions, respectively) files can be extracted
from the interactive database. SAPHIRE will provide default gate and basic event names.
Therefore, we recommend that both gate names and the basic event names be entered at
the time the fault tree is built.

There are different methods to enter fault tree logic, depending on what data type is available.
The quickest way is to enter existing files (.FTL) if available and compatible. The next best
method is to enter the fault-tree structure information into SAPHIRE in the graphical editor.

It is also possible, but may be difficult, to develop logic to enter into a flat file from a graphic and
then load this file into SAPHIRE. It is relatively straightforward to enter fault tree logic in the
graphical or logic editor. The process of entering and saving fault trees is discussed in detail in
the tutorial. The fault tree flat files that contain the logic information for the sample database are
shown in Table 18. Below are the available methods for entering fault tree logic.

Fault Tree Graphical Editor Method
If only hard copy data are available in graphics form, then create the fault tree in the SAPHIRE
graphical editor.

The fault tree creation procedure requires you to (a) double click “New Fault Tree” from the
Fault Trees left side list, (b) enter the fault tree info (name, description, etc), (c) from there,
entering the fault tree structure, as shown in the fault tree figures from Section 3. An example
display from the graphical editor is shown in Figure 9.

36

Figure 9. Fault tree graphical editor

Note:

� IMPORTANT: The fault tree top gate name must be the same as the fault tree file

name.

� IMPORTANT: SAPHIRE uses gates names to optimize solving fault trees. A unique

gate name must be used for each gate. Only when multiple gates share the identical
inputs, may they also share the same name. When this happens, it is good practice
to turn the gate and its inputs into a sub tree and reference it as a transfer, to
minimize the possibility of differing inputs.

� A transfer is usually made to the top gate of another fault tree. However, you can

transfer to a gate on the same fault tree as long as it doesn’t produce a circular
reference.

� All fault trees are entered into the interactive database system listing as top gate fault

trees. It is up to the user to designate these as sub-trees either when initially creating
the fault tree or from the menu (Edit � Properties) option. This does not affect the
analysis except that the fault tree list can then be successfully filtered via “Sub Trees”,
“Main Trees” options.

� SAPHIRE 8 does not have a Text Logic Editor as in previous versions of SAPHIRE.

37

Load Fault Tree Logic from Flat (.FTL) File Method
If hard copy data contain the fault tree structures defined as logic, then you may use a text
editor to enter the logic in the fault tree logic file (.FTL) format and load this file into SAPHIRE.
An example of the .FTL file format is shown in Table 18. This method is not discussed further.

Table 18. Extracted fault tree logic and graphic flat files.

File Extracted file information
.FTL SAMPLE, ALARM =

ALARM-0 AND ALM-BPF ALM-CPF
ALARM OR ALARM-0 ALARM-1 ALM-MECH
ALARM-1 OR ALM-FTS ALM-SWT
^EOS
SAMPLE, PERSONAL =
PERSONAL OR OTHER SICK SICK-FAM
^EOS
SAMPLE, TRNSPRT =
TRNSPRT OR PER-TRNS PUB-TRNS

4.5.2 Entering Fault Tree Descriptions and Text

As with event trees, many PRAs will contain descriptions and in depth textual discussion on
those fault trees considered important to the analysis. The sample database has both
description and text for all the fault trees developed for demonstration. Table 19 contains the
fault tree descriptions and text extracted. Below are the available methods for entering the fault
tree descriptions and text.

Table 19. Extracted fault tree descriptions and text flat files.

File Extracted file information
.FTD SAMPLE =

ALARM , ALARM CLOCK FAILURE
PERSONAL , PERSONAL PROBLEMS
TRNS-2 , COMMERCIAL TRANSPORTATION FAILS AT A LATER TIME
TRNSPRT , PERSONAL AND COMMERCIAL TRANSPORTATION FAIL

.FTT SAMPLE, ALARM=
The ALARM fault tree (Figure 3-2) is a simple representation modeling alarm clock
failure. Some common reasons for alarm clock failure include setting the wrong
time, mechanical failure, or power failure (either battery or commercial).

Interactive Modify Fault Trees Method
The fault tree descriptions and name can be modified by using the graphical editor (double click
a fault tree from the main window) then select the menu option (Edit � Properties). The fault
tree text can be changed in the fault tree graphical editor by changing the text in the “Fault Tree
Notes” section below the graphic (to view, select View � Show Notes from the graphical
editor). Though it may be slower than the other methods discussed here (depending on the

38

number of fault trees), we recommend it for most situations. Use of the SAPHIRE fault tree
graphics editor is described in the SAPHIRE User’s Guide.

Load from Fault Tree Flat File Method
Fault tree descriptions and text can also be entered into the fault tree flat file (.FTD) extracted
from the SAPHIRE program using a text editor. The fault tree textual data can be entered into
the fault tree text flat file (.FTT) using the SAPHIRE format. (This is also true of the .FTD). After
modification or development, both files must be loaded as described in Appendix A. This
method is not discussed further.

4.5.3 Entering Gate Descriptions and Attributes
Gate descriptions are usually available in PRAs. They are useful and necessary for clarifying
how the system logic was developed for use in future analysis. For example, gate descriptions
may designate where certain train logic begins in the fault tree logic so that the branch can be
eliminated for analysis. In the sample database, descriptions are available even though they do
not provide any additional information concerning the analysis. Note that the SAPHIRE attribute
is the type of gate, (i.e., OR, AND, and TRANSFER). Table 20 shows the fault tree gate files
extracted.

Below are the available methods for entering gate descriptions and attributes.

Table 20. Extracted fault tree gate flat files.

File Extracted file information
.GTD SAMPLE =

ALARM , ALARM CLOCK FAILURE
ALARM-1 , ALARM CLOCK SETTING FAILURE
ALARM-2 , ALARM CLOCK POWER FAILURE
PERSONAL , PERSONAL PROBLEMS
TRNS-2 , COMMERCIAL TRANSPORTATION FAILS AT A LATER TIME
TRNSPRT , PERSONAL AND COMMERCIAL TRANSPORTATION FAILURE

.GTA SAMPLE =
* Name , Type
ALARM , OR
ALARM-1 , OR
ALARM-2 , AND
PERSONAL , OR
TRNS-2 , AND
TRNSPRT , AND

Fault Tree Graphical or Logic Editor Method
Gate descriptions and attributes are easily entered into the graphics editor similar to how basic
even data is entered. This method is potentially the most time consuming but the most
straightforward. In this case, the fault tree could be finalized and files extracted without any
intermediate steps. Both the SAPHIRE Reference Manual and the SAPHIRE Tutorial contain
details concerning this process.

39

To enter the data using the graphical editor, double click the desired gate; select and right click
on the desired gate and choose the Edit popup menu option; or turn on quick edit and just select
the desired gate.

Load Gate Data from Flat File Method
Gate descriptions and attributes can be entered using a text editor into the gate description flat
file (.GTD) that was extracted from the SAPHIRE program. After modification, the file must be
loaded as described in Appendix A. The attribute file data will have been entered in the process
of entering the fault tree logic. It may be useful to extract the gate attribute flat file (.GTA) for
some other purpose. This method is not presented.

4.5.4 Generating Fault Tree Cut Sets

It has been noted that some PRAs provide in depth fault tree cut set information while others do
not. Having the original fault tree cut sets is very helpful in verifying that the correct logic has
been entered into the database. Since most PRAs comprised large system fault trees, it is
possible to generate many more cut sets than what may have been reported. In these cases, to
duplicate the PRA fault tree cut sets, it may be necessary to vary the probability cutoff used to
generate them. In addition, for some databases, it may be impossible to match the fault tree cut
sets that are reported in the PRA with those generated in SAPHIRE. This can be due to many
reasons, one of which is poor documentation for the original analysis performed. In this case, it
may be necessary to enter manually the cut sets into the database. For the sample database,
the fault tree cut sets were presented in Section 3. It is important to note that for cut set
generation and quantification, SAPHIRE uses only the logic and not the graphical
representation of the fault tree. The graphics are useful for easy visualization of the fault tree.
Table 21 shows the system cut set flat files extracted. Below are the available methods for
creating fault tree cut sets.

Solve Fault Tree Logic Method
In the process of generating fault tree cut sets, fault tree logic can be verified. The SAPHIRE
User’s Guide and the SAPHIRE Tutorial provide additional information on this process.

The procedure for generating fault tree cut sets and obtaining a report for verification requires
the following:

1. Open the solve form by select the desired fault tree, right click, and select solve.

2. Set the probability cutoff to limit the cut sets produced, or can be varied to duplicate the

original PRA. See the SAPHIRE User’s Guide and the SAPHIRE Technical Reference
Manual for a discussion of these features.

3. Pressing solve after selecting the appropriate cutoff values.

4. Results are then calculated and cut sets can then be viewed from there or after closing

the results window by selecting the solved fault tree, right clicking, and selecting the
“View Cut Sets” option.

40

5. Solving also make data such as “Summary Results”, “Importance Measures”, and

“Uncertainty” available.

Table 21. Extracted fault tree cut sets flat files.

File Extracted file information
.FTC SAMPLE, ALARM, 0001=

ALM-FTS +
ALM-MECH +
ALM-SWT +
ALM-BPF * ALM-CPF .
^EOS
SAMPLE, PERSONAL, 0001=
OTHER +
SICK +
SICK-FAM .
^EOS
SAMPLE, TRNS-2, 0001=
PER-TRNS * PUB-TRNS-LAT .
^EOS
SAMPLE, TRNSPRT, 0001=
PER-TRNS * PUB-TRNS .

Load from Fault Tree Cut Set Flat File Method
Cut set data can be entered by first using a text editor to edit the fault tree cut set flat file (.FTC)
developed using the SAPHIRE format. After development, the file must be loaded as described
in Appendix A. This would only be used in a case where it is impossible to match the database
files with the generated cut sets. (This may occur even when the fault tree graphics appear
identical.) This is a slower method, and because it requires more steps in the data entry
process may be prone to errors. This method is not presented.

4.5.5 Verifying the Fault Tree Data

After the logic and data for each fault tree are entered, it is a necessary step to verify that the
information entered into the database is correct before proceeding. The recommended method
to check the fault tree data is to extract those flat files, reports, and graphics that are the most
similar to what is presented in the database.

4.6 Loading Basic Event Data

This section discusses loading the basic event information such as probabilities, calculation
types, and attributes. As event tree files (see Section 4.2) and fault tree files (see Section 4.5)
are created or loaded, SAPHIRE constructs an internal list of all basic events, undeveloped
events, gates, initiating events, and top events. These are added to the interactive database
Basic Event listing on the left side of the main form. (If the Basic Event list is not visible select
View � Basic Events main menu option. However, these items will not be complete. You will
still need to enter probability values, descriptions, and other detailed information, as necessary.

41

Additionally, new basic events may need to be added to account for beta factors, recovery
actions, and other factors. For more information on SAPHIRE operation as it relates to basic
event information, consult the reference and technical manuals.

Basic events can be added and modified when creating Fault Trees; by double clicking a basic
event (see Figure 10) or “New basic event” in the Basic Event listing; and by using a flat file to
load text based files through the (File � Load/Extract) main menu option.

To achieve the optimum combination of speed and accuracy, a combination of these methods
may be utilized. It is generally recommended that basic events be added using the interactive
option, and modified (when large numbers of events must be edited) by using the flat file
method.

SAPHIRE basic events can contain a wide range of detail, including failure rate and uncertainty
data, general attributes, process flags, and compound and transformation data. It is beyond the
scope of this manual to address the details of the basic event data feature content. Appendix B
enumerates the available field options, which are discussed in more detail in the SAPHIRE
Users Guide.

Figure 10. The modify basic event dialog

42

The following steps must be performed to actually load and verify all the basic event data:

1. Adding/Modifying Basic Events (Section 4.6.1)

2. Basic Event Flat File Formats (Section 4.6.2)

4.6.1 Adding/Modifying Basic Events

Basic events not listed in either the fault tree or event tree may be necessary in a PRA to
accommodate special situation such as substitutions or recovery actions. The sample database
requires the entry of one recovery action basic event. This is shown in the basic event listing in
Section 3.

Interactive Modify Basic Events Method
Basic events can be added by double clicking the “New basic event” option in the Basic Events
listing. To edit existing basic event info, double click the event or right click it and select the
“Edit Basic Event” menu item. This opens the Basic event Editor and displays all editable fields
in the various tab section. (as seen in Figure 10) Using this method is perhaps the easiest
because it is done entirely within the SAPHIRE environment. Though it may be slower than the
other method discussed here, it is recommended for most situations. See the SAPHIRE User’s
Guide and the SAPHIRE Tutorial for more information.

Load from Basic Event Flat File Method
Basic events also can be entered using a text editor by modifying the basic event flat file (.BED)
that can be extracted from the SAPHIRE program. Other basic event info can be added with
other files such as the (.BEA and .BEI) files. After modification, the file must be loaded as
described in Appendix A. This may be the fastest method available but requires more
substantial steps and may be prone to errors. This method is not discussed further.

4.6.2 Basic Event Flat File Formats

Basic Event Description Flat File
Basic event descriptions can be entered using a text editor by modifying the basic event flat file
(.BED) that can be extracted from the SAPHIRE program (as shown in Table 22). After
modification, the file must be loaded as described in Appendix A. This is fastest method
available and, due to the large number of basic events common in most PRAs, we recommend
it over method A. This method is not discussed further.

4.6.3 Additional Basic Event Data Flat Files

To determine the frequency of failure in a SAPHIRE analysis, it is necessary to enter the
probability or frequency of failure for each basic event. Most PRAs may have several
calculation types, the most common being failure on demand, failure over a mission time, and

43

standby failure rates. In addition, PRAs generally address uncertainty and will provide
applicable uncertainty parameter information. It is beyond the scope of this document to
present all the possible applications available. The SAPHIRE Technical Reference Manual
provides a detailed discussion on many of the features available. The sample database
contains limited examples and is presented for illustration only. Table 23 shows the basic event
data flat files extracted.

Load from Basic Event Information Flat File Method.
Both the (.BEA and .BEI) files contain other basic event information that can be imported and
extracted from the SAPHIRE program. After modification, the file must be loaded as described
in Appendix A. Using this technique is the recommended method (though the file will need to be
reloaded after modification) since it requires substantially fewer keystrokes and is the fastest
method available. This method is not discussed further.

Note:

� Not all the information for a basic event needs to be entered for calculation purposes.
The information required is the primary name, the initiating event indication, the
calculation type, the probability value, and the uncertainty distribution type and value
(uncertainty is only necessary if an uncertainty calculation is to be performed).

� When a basic event is added to the SAPHIRE internal list, it is assigned default values

for uncertainty and failure data.

44

Table 22. Extracted basic event descriptions flat file.

File Extracted file information
.BED * Name , Descriptions, A, Analysis Type, Phase Type

SAMPLE =
<FALSE> ,System Generated Success Event
, , RANDOM ,
<PASS> ,System Generated Ignore Event
, , RANDOM ,

<TRUE> ,System Generated Failure Event
, , RANDOM ,

ALARM ,Alarm system fault tree
, , RANDOM ,

ALM-BPF ,Alarm fails due to battery failure
, , RANDOM ,

ALM-CPF ,Alarm fails due to commercial power failure
, , RANDOM ,

ALM-FTS ,Alarm fails because worker fails to set
, , RANDOM ,

ALM-MECH ,Alarm fails due to mechanical failure
, , RANDOM ,

ALM-SWT ,Alarm fails because worker set wrong time
, , RANDOM ,

MEDICINE ,Recovery for sick failure preventing attending work
, , RANDOM ,

OTHER ,Other personal reasons that cause a failure to get to work
, , RANDOM ,

PER-TRNS ,Personal transportation
, , RANDOM ,

PERSONAL ,Personal reasons for failure system fault tree
, , RANDOM ,

PUB-TRNS ,Public transportation fails
, , RANDOM ,

PUB-TRNS-LAT ,Public transportation fails late time frame
, , RANDOM ,

SICK ,Failed to get to work because of illness
, , RANDOM ,

SICK-FAM ,Failed to get to work because of illness in project
, , RANDOM ,

TRNS-2 ,Transportation system fault tree-late time frame
, , RANDOM ,

TRNSPRT ,Transportation system fault tree
, , RANDOM ,

WORK ,Event tree (WORK) initiating event
, , RANDOM ,

45

Table 23. Extracted basic event data flat files.

File Extracted file information
.BEA SAMPLE =

* Name ,AltName
,Typ,Sys,Fail,Loc,CompId,Train,Attributes ,Is Template, Template
Name ,Use TemplateFlags
<FALSE> , <FALSE> , , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
<INIT> , <INIT> , , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
<PASS> , <PASS> , , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
<TRUE> , <TRUE> , , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
ALARM , ALARM , DE , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
ALARM3 , ALARM3 , , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, B
ALM-BPF , ALM-BPF , , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, B
ALM-CPF , ALM-CPF , , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, B
ALM-FTS , ALM-FTS , , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, B
ALM-MECH , ALM-MECH , , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, B
ALM-SWT , ALM-SWT , , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, B
INIT-EV , INIT-EV , , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
OTHER , OTHER , , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, B
PER-TRNS , PER-TRNS , , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, B
PERSONAL , PERSONAL , DE , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
PUB-TRANS-LATE , PUB-TRANS-LATE , , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, B
PUB-TRNS , PUB-TRNS , , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, B
SICK , SICK , , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,

46

F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, B
SICK-FAM , SICK-FAM , , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, B
TRNS-2 , TRNS-2 , DE , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
TRNSPRT , TRNSPRT , DE , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
WORK , WORK , , , , , , , Y, N, N, N, N,
N, N, N, N, N, N, N, N, N, N, N, , , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,

.BEI SAMPLE =
* Name ,FdT,UdC,UdT, UdValue , Prob , Lambda , Tau , Mission
,Init,PF, UdValue2, Calc. Prob, Freq, Analysis Type , Phase Type
ALARM , 1, , , 0.000E+000, 1.000E+000, 0.000E+000, 0.000E+000,
0.000E+000, , , 0.000E+000, 1.000E+000, , RANDOM ,
ALARM3 , 1, , , 3.000E+000, 1.000E+000, 0.000E+000, 0.000E+000,
0.000E+000, , , 3.000E+000, 1.000E+000, Y, RANDOM ,
ALM-BPF , 1, , , 3.000E+000, 2.000E-001, 0.000E+000, 0.000E+000,
0.000E+000, , , 3.000E+000, 2.000E-001, Y, RANDOM ,
ALM-CPF , 1,, , 3.000E+000, 1.020E+000, 0.000E+000, 0.000E+000,
0.000E+000, , , 3.000E+000, 1.000E+000, Y, RANDOM ,
ALM-FTS , 1, , , 3.000E+000, 2.000E-002, 0.000E+000, 0.000E+000,
0.000E+000, , , 3.000E+000, 2.000E-002, Y, RANDOM ,
ALM-MECH , 1, , , 3.000E+000, 1.000E-003, 0.000E+000, 0.000E+000,
0.000E+000, , , 3.000E+000, 1.000E-003, Y, RANDOM ,
ALM-SWT , 1, , , 3.000E+000, 1.000E-002, 0.000E+000, 0.000E+000,
0.000E+000, , , 3.000E+000, 1.000E-002, Y, RANDOM ,
BD , 1, , , 0.000E+000, 1.000E+000, 0.000E+000, 0.000E+000,
0.000E+000, , , 0.000E+000, 1.000E+000, , RANDOM ,
BE , 1, , , 0.000E+000, 1.000E+000, 0.000E+000, 0.000E+000,
0.000E+000, , , 0.000E+000, 1.000E+000, , RANDOM ,
BF , 1, , , 0.000E+000, 1.000E+000, 0.000E+000, 0.000E+000,
0.000E+000, , , 0.000E+000, 1.000E+000, , RANDOM ,
BG , 1, , , 0.000E+000, 1.000E+000, 0.000E+000, 0.000E+000,
0.000E+000, , , 0.000E+000, 1.000E+000, , RANDOM ,
EJ , 1, , , 0.000E+000, 1.000E+000, 0.000E+000, 0.000E+000,
0.000E+000, , , 0.000E+000, 1.000E+000, , RANDOM ,
INIT-EV , 1, , , 0.000E+000, 1.000E+000, 0.000E+000, 0.000E+000,
0.000E+000, I, , 0.000E+000, 1.000E+000, , RANDOM ,
OTHER , 1, , , 3.000E+000, 5.000E-002, 0.000E+000, 0.000E+000,
0.000E+000, , , 3.000E+000, 5.000E-002, Y, RANDOM ,
PER-TRNS , 1, , , 3.000E+000, 1.007E+000, 0.000E+000, 0.000E+000,
0.000E+000, , , 3.000E+000, 1.000E+000, Y, RANDOM ,
PERSONAL , 1, , , 0.000E+000, 1.000E+000, 0.000E+000, 0.000E+000,
0.000E+000, , , 0.000E+000, 1.000E+000, , RANDOM ,
PUB-TRANS-LATE , 1, , , 3.000E+000, 3.000E-001, 0.000E+000, 0.000E+000,
0.000E+000, , , 3.000E+000, 3.000E-001, Y, RANDOM ,
PUB-TRNS , 1, , , 3.000E+000, 1.006E+000, 0.000E+000, 0.000E+000,
0.000E+000, , , 3.000E+000, 1.000E+000, Y, RANDOM ,
SICK , 1, , , 3.000E+000, 1.030E+000, 0.000E+000, 0.000E+000,
0.000E+000, , , 3.000E+000, 1.000E+000, Y, RANDOM ,
SICK-FAM , 1, , , 3.000E+000, 5.000E-002, 0.000E+000, 0.000E+000,
0.000E+000, , , 3.000E+000, 5.000E-002, Y, RANDOM ,
TRNS-2 , 1, , , 0.000E+000, 1.000E+000, 0.000E+000, 0.000E+000,
0.000E+000, , , 0.000E+000, 1.000E+000, , RANDOM ,
TRNSPRT , 1, , , 0.000E+000, 1.000E+000, 0.000E+000, 0.000E+000,
0.000E+000, , , 0.000E+000, 1.000E+000, , RANDOM ,
WORK , 1, , , 0.000E+000, 1.000E+000, 0.000E+000, 0.000E+000,
0.000E+000, I, , 0.000E+000, 1.000E+000, , RANDOM ,

47

4.7 Loading Sequence Data

This section discusses the loading of sequence data, including cut sets, text, and descriptions.
Sequences are used in PRAs to develop the overall CDF value and to identify those scenarios
of events that are of concern to plant safety. Sequences with similar outcomes are grouped by
end states for evaluation in the level 2 and 3 analysis. Most PRAs present the dominant (or
greatest contributors) sequence cut sets.

The following steps must be performed to actually load and verify all the sequence data

1. Generating sequence cut sets (Section 4.7.1)

2. Entering the sequence description and text (Section 4.7.2).

4.7.1 Generating Sequence Cut Sets

Since some PRAs have event trees that link to large system fault trees, it is possible to generate
a large number of cut sets. The probability cutoff option and the size cutoff limits the number of
cut sets to those above a certain value and order. This cutoff can be manipulated so that the
cut sets match those produced by the PRA. For certain databases, it may be impossible to
match the sequence cut sets that are reported in the PRA with those generated by SAPHIRE.
This difference can be due to many reasons, one of which is poor documentation for the original
analysis performed. In this case, it may be necessary to manually enter the cut sets into the
database.

The sequence cut sets for the sample database are reported in Section 3. There was no cutoff
used for this very simple problem. It is important to note that for cut set generation and
quantification, SAPHIRE uses only the logic and not the graphical representation of the fault
tree. Table 24 shows the sample database sequence cut sets.

Below are the available methods for generating sequence cut sets.

Solve Sequence Logic Method
Use the Solve form to generate sequence cut sets. The SAPHIRE User’s Guide and the
SAPHIRE Tutorial provide additional information on this process.

The procedure for solving sequence logic for cut sets requires you to

1. Select the sequence(s) to solve.

2. Right click and choose the Solve option from the popup menu to bring up Solve Cut Sets

dialog. This is where the probability cutoff can be changed to limit the cut sets produced
or can be varied to duplicate the original PRA. See the SAPHIRE User’s Guide and the
SAPHIRE Technical Reference Manual for a discussion of these features.

48

3. Click the Cut Sets button to view the cut sets and, if desired, create a report.

Table 24. Extracted sequence cut sets flat files.

File Extracted file information
.SQC SAMPLE, WORK, 2, 0001=

PER-TRNS * PUB-TRNS .
^EOS
SAMPLE, WORK, 3, 0001=
OTHER +
SICK * MEDICINE +
SICK-FAM .
^EOS
SAMPLE, WORK, 4, 0001=
ALM-FTS +
ALM-MECH +
ALM-SWT +
ALM-BPF * ALM-CPF .
^EOS
SAMPLE, WORK, 5, 0001=
ALM-FTS * PER-TRNS * PUB-TRNS-LAT +
ALM-MECH * PER-TRNS * PUB-TRNS-LAT +
ALM-SWT * PER-TRNS * PUB-TRNS-LAT +
ALM-BPF * ALM-CPF * PER-TRNS * PUB-TRNS-LAT .

Load from Sequence Cut Set Flat File Method
Using a text editor, cut set data can be entered into a sequence cut set flat file (.SQC) format.
After development, the file must be loaded as described in Appendix A. This would only be
used in a case where it is impossible to match the database files with the generated cut sets.
(This may occur even when the logic appears identical.) This method will not be presented.

4.7.2 Entering the Sequence Description and Text

It is common that PRAs will discuss in detail the dominant sequences that were identified. The
accident scenarios and recovery actions applied may be described in detail. The sample
database contains a brief description and some text information for the sequences. Table 25
shows the sample database sequence description and text flat files.

Below are the available methods for entering the sequence description and text.

Interactive Modify Event Tree Sequence Method
The sequence description and text can be entered when editing the event tree. (Refer to
section 4.3.2) This technique is perhaps the easiest method as it is done entirely within the
SAPHIRE environment. Although it may be slower than the other method discussed below, it is
recommended for most situations. Additional information concerning adding descriptions and
text is contained in the SAPHIRE User’s Guide.

49

 Table 25. Extracted sequence description and text flat files.

File Extracted file information
.SQD SAMPLE, WORK=

2 ,LATE-TO WORK
3 ,MISS-WORK
4 ,LATE-TO-WORK
5 ,LATE-TO-WORK

.SQT SAMPLE, WORK, 3=

Sequence 3 sample text.

Load from Sequence Flat File Method
Using a text editor, the sequence description can be entered into the sequence description flat
file (.SQD) format. The sequence textual data can be entered into the sequence text flat file
(.SQT) using the SAPHIRE format. After modification or development, both files must be loaded
as described in Appendix A. This method is not discussed further.

4.8 Post-processing Actions

This section discusses the addition of post-processing or recovery actions to sequence cut sets.
PRAs often have post-processing actions applied to a specific scenario of events that may
occur in a sequence or fault tree cut set. These actions are not directly modeled in either an
event tree or fault tree and may be required to be added to the cut sets to obtain a result
comparable to the PRA. The sample database has a very simple post-processing action that
will be applied to one sequence cut set. Post-processing actions or rules can be applied to fault
tree cut sets using Fault Tree post processing and Project Fault Tree post processing rules. An
example of a Project Rule recovery action being applied to sequence cut sets would be the case
of double maintenance events not allowed by technical specifications. The sample database
contains a simple example of a recovery action applied to a sequence cut set.

The following method discusses how to use SAPHIRE to apply recovery actions from the
Sequences main menu option. The method will apply recovery actions to sequence cut sets,
but fault tree cut set recovery actions are similar. The SAPHIRE User’s Guide and the
SAPHIRE Tutorial provide additional information on this process.

The procedure for applying recovery requires the following steps:

1. Select an event tree from the Event Tree listing.

2. Right click to invoke a pop up menu and choose the Edit Post-processing Rules option.

(Depending on the desired applicable scope of the rule, the project Event Tree Post
Processing Rules could also be edited.)

3. Type the recovery rule text into the rule editor, compile, and save it.

50

Detailed steps for adding recovery actions are described in Appendix A.

4.9 Analyzing Uncertainty

Uncertainty of the cut set and end state results are commonly reported in the PRAs. Both
Monte Carlo and Latin Hypercube options are available in SAPHIRE. It is sometimes difficult to
compare SAPHIRE results with those reported in a PRA, because there will be an expected
variability between the uncertainty runs depending on the algorithms used, the number of
samples, and the seed numbers chosen.

The following steps must be performed to generate an uncertainty analysis for the database and
verify it against the PRA:

1. Generate uncertainty for fault tree cut sets (Section 4.9.1)

2. Generate uncertainty for sequence cut sets (Section 4.9.2)

3. Generate uncertainty for end states (Section 4.9.3)

4. Generate uncertainty for groups of sequences or the project (Section 4.9.4).

4.9.1 Generating Uncertainty for Fault Tree Cut Sets

It is usual to find that a fault tree uncertainty analysis was reported for those PRAs that provided
fault tree cut sets. The sample database provides the results to an uncertainty analysis.
Uncertainty summary information is shown in Table 26). Uncertainty can only be produced after
cut sets have been generated. Further discussions on uncertainty analysis are found in both
the reference and technical manuals.

The procedure for calculating fault tree uncertainty requires the following

1. Select a fault tree from the list.

2. Right click and choose “View Uncertainty” option from the popup menu.

3. Select the uncertainty types and values to use in the Uncertainty Calculation Values

dialog, then click Calculate.

4. Wait for the calculation to complete a graph is then displayed and results can be seen by

pressing the Result Table button.

51

Table 26. Extracted fault tree attributes (uncertainty) flat file.

File Extracted file information
.FTA SAMPLE, 0001 =

* Name , Level, Mission , MinCut , Def ProCut,Used ProCut,Sample,Seed,Siz,Sys,
 Cuts,Events, UdValues, Def Flags, Used Flags,S QMethod, S QPasses, R QMethod, R
 QPasses, Alt Name
ALARM ,0, 2.400E+001, 2.706E-003,------E----,------E----, 5000, 4321,--, , 4
 5, 1.032E-004, 1.018E-003, 2.577E-003, 9.309E-003, 4.912E-006, 1.228E-001, 5.489E-
003,
 7.906E+000, 1.032E+002, , , ,----, , 0,ALARM
PERSONAL ,0, 2.400E+001, 2.007E-002,------E----,------E----, 5000, 4321,--, , 3
 3, 2.759E-003, 1.198E-002, 1.950E-002, 5.977E-002, 4.544E-004, 6.530E-001, 2.731E-
002,
 7.855E+000, 1.219E+002, , , M,----, , 0,PERSONAL
TRNS-2 ,0, 2.400E+001, 1.100E-005,------E----,------E----, 5000, 4321,--, , 1
 2, 7.801E-007, 5.441E-006, 1.039E-005, 3.676E-005, 8.671E-008, 3.369E-004, 1.549E-
005,
 5.348E+000, 6.211E+001, , , M,----, , 0,TRNS-2
TRNSPRT ,0, 2.400E+001, 1.485E-005,------E----,------E----, 5000, 4321,--, , 1
 2, 1.053E-006, 7.345E-006, 1.403E-005, 4.963E-005, 1.171E-007, 4.548E-004, 2.092E-
005,
 5.348E+000, 6.211E+001, , , M,----, , 0,TRNSPRT

4.9.2 Generating Uncertainty for Sequence Cut Sets

Most PRAs provide sequence cut set uncertainty. Again, it may be difficult to compare
SAPHIRE results with those reported in a PRA because there will be an expected variability
between the uncertainty runs, depending on the algorithms used, the number of samples, and
the seed numbers chosen. The sample database provides the seed number and was
developed on SAPHIRE using the Monte Carlo algorithm and, therefore, it should be possible to
produce the same results.

Uncertainty can only be produced after cut sets have been generated. Further discussions on
uncertainty analysis are found in both the SAPHIRE User’s Guide and the SAPHIRE Technical
Reference Manual.

The procedure for generating sequence uncertainty requires is the same as 4.9.1 except select
sequence(s).

4.9.3 Generating Uncertainty for End States
Very few PRAs provide end state uncertainty. Again, it may be difficult to compare SAPHIRE
results with those reported in a PRA because there will be an expected variability between the
uncertainty runs, depending on the algorithms used, the number of samples, and the seed
numbers chosen. The sample database provides the seed number and was developed on
SAPHIRE using the Monte Carlo algorithm and, therefore, it should be possible to reproduce the
uncertainty results. The flat file results for end state uncertainty are shown in table x.

52

Uncertainty can only be produced after sequence and end state cut sets have been generated.
Further discussions on uncertainty analysis are found in both the SAPHIRE User’s Guide and
the SAPHIRE Technical Reference Manual.

The procedure for generating end state uncertainty is the same as the steps in 4.9.1 except
have the desired end state(s) selected.

4.9.4 Generating Uncertainty for Groups of Sequences or the Project

Most PRAs provide sequence uncertainty, but only a few may perform uncertainties on groups
of sequences that are not grouped previously by end state. In addition, some PRAs provide the
results of a project uncertainty. The procedure is the same to generate either groups or project
uncertainty and, therefore, is presented together. It may be difficult to compare SAPHIRE
results with those reported in a PRA because there will be an expected variability between the
uncertainty runs, depending on the algorithms used, the number of samples, and the seed
numbers chosen. The sample database provides the seed number and was developed on
SAPHIRE using the Monte Carlo algorithm and, therefore, it should be possible to produce the
same results.

Uncertainty can only be produced after sequence cut sets have been generated. Further
discussions on uncertainty analysis are found in both the SAPHIRE User’s Guide and the
SAPHIRE Technical Reference Manual.

To generate sequence group or project, just select the desired sequences or all the event trees
to solve the entire project and follow the steps in 4.9.1

53

5. OTHER DATA LOADING METHODS

While MAR-D (e.g., Load/Extract) is the primary mechanism for loading data files into SAPHIRE
8, there are two other methods available:

� Loading an “accident sequence matrix” file
� Using the “project integrate” module

5.1 Loading Data via an Accident Sequence Matrix

Development of models which make use of similar event tree structures, such as external
events models, was made user-friendly by providing a method to import event tree logic and
sequence flag sets. This method allows a model developer to specify the accident sequence
information in a spreadsheet. An example input deck is shown in Figure 11.

* Model Type Name,Model Type ID,IE,IE Freq.,IE Desc.,Event Tree Name,Event Tree Desc.,X-fer
to,End State Substitution,Flag Set Name,Flag Set Desc.,Flag Set Setting(s),,,,

FIRE,FIR,IE-FRI-1,4.84E-05,Fire Scenario 1,FIRE1,"Demo Fire scenario 1",LOSP,,FIRE_FS_1,Flag
Set for Fire Scenario 1,E-CV-A

FIRE,FIR,IE-FRI-2,2.67E-04,Fire Scenario 2,FIRE2,"Demo Fire scenario 2",LOSP,,FIRE_FS_2,Flag
Set for Fire Scenario 2,E-CV-B

FIRE,FIR,IE-FRI-3,2.58E-04,Fire Scenario 3,FIRE3,"Demo Fire scenario 3",LOSP,,FIRE_FS_3,Flag
Set for Fire Scenario 3,E-MOV-1

FLOOD,FLI,IE-FLOOD-1,4.84E-05,Flood Scenario 1,FLOOD1,"Demo Flood scenario
1",LOSP,,FLOOD_FS_1,Flag Set for Flood Scenario 1,E-CV-A

FLOOD,FLI,IE-FLOOD-2,2.67E-04,Flood Scenario 2,FLOOD2,"Demo Flood scenario
2",LOSP,,FLOOD_FS_2,Flag Set for Flood Scenario 2,E-CV-B

FLOOD,FLI,IE-FLOOD-3,2.58E-04,Flood Scenario 3,FLOOD3,"Demo Flood scenario
3",LOSP,,FLOOD_FS_3,Flag Set for Flood Scenario 3,E-MOV-1

SEISMIC1,EQ1,IE-EQ-BIN-1,1.036E-03,Seismic Scenario 1,SEISMIC1,"Demo Seismic scenario
1",LOSP,,SEISMIC_FS_1,Flag Set for Seismic Scenario 1,E-CV-A

SEISMIC2,EQ2,IE-EQ-BIN-2,2.560E-05,Seismic Scenario 2,SEISMIC2,"Demo Seismic scenario
2",LOSP,,SEISMIC_FS_2,Flag Set for Seismic Scenario 2,E-CV-B

SEISMIC3,EQ3,IE-EQ-BIN-3,8.740E-06,Seismic Scenario 3,SEISMIC3,"Demo Seismic scenario
3",LOSP,,SEISMIC_FS_3,Flag Set for Seismic Scenario 3,E-MOV-1

Figure 11. Information for an accident sequence matrix file

54

In SAPHIRE, the accident sequence matrix file is loaded via Project � Tools � Add Accident
Matrix from the main menu. Click the open button and locate the accident matrix file desired.
Click the Add button and the process begins. Information will appear in a text box as the
accident matrix file is being processed. Any errors or warnings will also be displayed in this box.
When done, click the OK button. The project will now be populated with the event trees and
basic events described in the accident sequence matrix file.

This capability builds upon an existing model – it does not build a new project from scratch. In
the above example an internal initiating events model is extended to include external initiating
events.

SAPHIRE will create the following from the above line items:

Model Type: (Model Type Name, Model Type ID)

Initiating Event: (IE, IE Freq., IE Desc.)

Event Tree: (Event Tree Name, Event Tree Desc.)

End State Substitution (created in the linkage rules)

Flag Set: (Flag Set Name, Flag Set Desc., Flag Set Setting(s)),
where the “Flag Set Settings” is the basic event name which will be
set to True (the ASM does not currently set the basic event to False
or Ignore).

The following must exist:

The transfer tree: (X-fer to)

5.2 Integrate Project Utility

Integrate Project provides comparison of the current project with another project and transfer of
selected items from the compared project to the current one.

To integrate one project into another:

� Open main menu File � Integrate Project
� Choose the project either from a list of recently opened projects or browse for a file using

the Browse button (see Figure 12).

55

Figure 12. First step of the Project Integration option

Click on the Integrate button to compare the files between the project just selected and the
project that is already open. Depending on the amount of information stored inside the two
projects, this step may take several seconds.

56

The report will show the differences between the two projects. To transfer items from the
compared project to the current project:

� As shown above, place check marks in the boxes next to Basic Events, Event Models, Fault
Trees, and Event Trees desired for import into the current project.

� Click on Update Current Project to start the import and a verification window will open.

57

After reviewing the items to be added either click on Perform Update to add them to the current
project or Cancel to exit.

Appendix A

Procedures for Database Loading

A-2

A-3

A. Procedures for Loading or Extracting Data

Extracting Files
The user may extract flat files from the interactive database by using the load/extract form. A
.MARD file and a corresponding sub-folder in the user specified directory is created/needed.
Associated files needed for load/extract are contained in the sub-folder.

To extract a flat file:

1. Select the items desired for exporting from the left side lists. (If exporting section of the

entire project and not individual items, skip this step.)

2. Select the (File � Load/Extract) main menu option, as shown in Figure A-1. The Load
and Extract Data dialog will appear, as shown in Figure A-2.

3. Select the Extract tab at the top left of the dialog.

4. If you want to export sections of the entire project, for example the logic of all the fault

trees, select the radio button option “All Items”.

5. Check the sections of the project you want to export. For example, if you want to export

the fault tree logic and all the basic event information, under “Fault Tree” check the sub
category “Logic” and check the main category “Basic Events”. (See figure A-1) Else if
exporting the entire project, click the button on the bottom of the form “Mark”, to check all
the items.

6. Enter the name and location to save the export files or click the “Save as” button to

browse for a location.

7. Click the Process Button.

8. If any errors occurred it will be stated and you can view those errors by pressing the

Errors button on the bottom of the form.

9. To accept the default file name, click the OK button. The user may first rename the file,

but the extension should not be changed.

Caution: SAPHIRE will overwrite any existing file with the extracted file of the same name.

A-4

Figure A-1 Load and Extract menu option

A-5

Figure A-2 Extract menu option

Figure A-3 Example of a Basic Events extraction dialog

Loading Files

You may also use the Load and Extract option to load data into a project. After creating flat files
in an ASCII format, you may load these files back into a database (note that information loaded
this way goes into the General Analysis interface). Most extracted files from previous versions
of SAPHIRE will be able to be loaded into SAPHIRE 8 version, however possible incorrect
default values could be used if old version files are missing needed data.

To load a flat file from a previous version of SAPHIRE:

1. Select the (File � Load/Extract) main menu option, as shown in Figure A-1. The Load

and Extract Data dialog will appear, as shown in Figure A-2.

2. Check “Allow old formats option.

A-6

3. Select “Open” and browse for the desired data file, as shown in figure A-5. (Change

“Files of type” to “All files” in order to see all possible files.)

4. Be default only the correct import option will be allowed so just click the “Process”

button.

Figure A-4 Load menu option

To load a flat files from a SAPHIRE 8 export:

1. Select the (File � Load/Extract) main menu option, as shown in Figure A-1. The Load

and Extract Data dialog will appear, as shown in Figure A-2.

2. Select “Open” and browse for the (.MARD) file.

3. All available data for import from the selected (.MARD) file is distinguished by having

enabled check boxes. Select the data desired for importing (see Figure A-7).

4. Click the Process button. Any sections that had problems with importing can be viewed
by pressing the Errors button.

A-7

Note – Even if an entire project is exported, when importing it, all items may not be available.
This is because the project that was exported had no data in that area.

Figure A-7 Version 6 Load data prompt

A-8

Appendix B

General MAR-D Data Interchange Formats

B-2

B-3

B. General MAR-D Data Interchange Formats

This appendix enumerates the formats for each of the various data interchange formats as of
October 2010. SAPHIRE 8 uses a slightly different method than previous versions, for
loading/extracting MAR-D files. To make it easier to load/extract groups of data a (.MARD) file is
used. This (.MARD) file contains a reference to all other necessary files in a subdirectory
created in the extract or needed for the load. This makes loading easier by just having to open
the one (.MARD) file.

Except where noted, file formats are the same for SAPHIRE versions 7 and 8. The primary
version differences occur for the event tree logic and basic event information. These changes
were made to allow basic events to have various Model and Phase types and event trees to
have different phases.

The file formats are backward compatible: version 7 files can be successfully loaded into
version 8. It is not valid to try and load version 8 files into version 7, due to the presence of
subtle format and content changes some files will fail.

General Format Rules

1. All name references (project names, event names, etc.) must be upper-case

alphanumeric. All lower-case characters will be converted to upper-case. Any alpha
fields that are longer than the format specified will be truncated. No spaces are allowed
in the middle of names.

2. Descriptions can have both upper-case and lower-case characters. No character

checking will be done. No commas are allowed in the description.

3. Commas are used as field delimiters in most formats and can be used as placeholders

for unknown fields. Any number of leading and trailing field spaces can be inserted.
Exceptions to this format are detailed as needed.

4. Text rules:

1. File is standard ASCII text, single spaced, upper- and lower-case.
2. ^EOS signals the End of Section so that multiple names in the same project can

be collected in one file.

These rules apply to all files unless specifically stated otherwise.

B-4

Contents list for Appendix B

Project Information ………………………………………………………………………………….. B-4

Basic Event Information ……………………………………………………………………………. B-6

Fault Tree Information ……………………………………………………………………………… B-12

Event Tree Information …………………………………………………………………………….. B-16

End State Information ……………………………………………………………………………… B-21

Sequence Information ……………………………………………………………………………… B-23

Gate Information ……………………………………………………………………………………. B-27

Change Set Information ……………………………………………………………………………. B-27

Histogram Information ……………………………………………………………………………… B-30

Project Information

Project Names and Descriptions

File Name:
xxxxxx.FAD
File Format:
name,description[,A]
where

name 24 character Project name
description 120 character Project description
A 1 character If included indicates alternate description

B-5

 Project Attribute File

File Name:
xxxxxx.FAA
File Format:
project=
name,mission,newSum,co,loc,type,design,vendor,AE,OpDate,QualDate
where

name 24 character Project name
mission Floating point Default mission time in hours
newSum Floating point New sequence frequency sum
Co 10 character Company name
Loc 16 character Location name
type 3 character Facility type
design 10 character Facility design
vendor 5 character Vendor name
AE 10 character Architectural Engineer
OpDate (yyyy/mm/dd) Operational date
QualDate (yyyy/mm/dd) Qualification date

Project Recovery Rules
File Name:
xxxxxxxx.FAY
File Format:
project =
-- recovery rule text --
where

project 24 character Project name

Project-Level Fault Tree (system) Recovery Rules

File Name:
xxxxxxxx.FAS
File Format:
project =
-- recovery rule text --
where

project 24 character Project name

B-6

Project Partition Rules
File Name:
xxxxxxxx.FAP
File Format:
project =
-- partition rule text --
where

project 24 character Project name

Project Textual Information

File Name:
xxxxxx.FAT
File Format:
Project [,A] =
-- text --
where

project 24 character Project name
A 1 character If included indicates alternate description

Basic Event Information

Event Names and Descriptions

File Name:
xxxxxx.BED
File Format:
project =
name,description[,A],analysis type, phase type
. . . , . . .
where

project 24 character Project name
name 24 character Event primary name
description 120 character Alphanumeric description
A
analysis type

phase type

1 character
24 character

24 character

If included indicates alternate description
Analysis Type for this basic event (blank if
phase type is present)
Phase Type for this basic event (blank if
analysis type is present)

B-7

Note : The (name, analysis type) and (name, phase type) combination must be unique. For
example you can have several events called ALARM, as long as each has a different analysis
or phase.

Basic Event Rate Information
File Name:
xxxxxx.BEI
File Format:
project =
name, Fdt, udC, udT, udValue, prob, lambda, tau, mission, Init, Flag, udV2,
Calc. Prob, Freq, Analysis Type, Phase Type
. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . .
where

Project 24 character Project name
Name 24 character Basic event name
Fdt 1 character Failure Calculation type

1 Probability
V Value event (input to compound event)
3 1 Exp(Lambda * Mission Time)
5 Operating component with full repair
7 1+(EXP(Lambda*Tau) 1.0)/(Lambda*Tau)
T Set to House Event (Failed, Prob=1.0)
F Set to House Event (Successful,Prob=0.0)
I Set to ignore
C Compound event
S Use fault tree min cut upper bound
E Use end state tree min cut upper bound
G Seismic event - Enter g level for screening
H Seismic event - Use medium site hazard curve for

screening

UdC 24 characters Uncertainty correlation class
Events in same class are 100% correlated.

UdT 1 character Uncertainty distribution type

L Log normal, error factor
N Normal, standard deviation
B Beta, b of Beta(a,b)
D Dirichlet, b of Dirichlet(b)
G Gamma, a Gamma(a)
C Chi-squared, degrees of freedom

B-8

E Exponential, none
U Uniform, Upper end pt.
H Histogram
M Maximum entropy
S Seismic Log Normal
O Constrained non-informative
T Triangular, mode, upper end of Triangular(m, u)

UdValue Floating point Uncertainty distribution value
Prob Floating point Probability value
Lambda Floating point Basic event failure rate per hr.
Tau Floating point Time to repair in hours
Mission Floating point Mission time
Init Boolean Initiating event flag (Y/N)
Flag 1-character process flag
UdV2 Floating point Uncertainty distribution value #2
Calc. Prob
Freq
Analysis Type 24 character Analysis Type for this basic event (blank if

phase type is present)
Phase Type 24 character Phase Type for this basic event (blank if

analysis type is present)

 General Rules:

1. The name field is mandatory.
2. Note that the “analysis type” field is now referred to in SAPHIRE 8 as Model Type.

Basic Event Attribute Codes
File Name:
xxxxxx.BEA
File Format:
project =
name,Aname,type,sys,fail,loc,compID,Gname,train,att1,..,att16
. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . .
where

project 24 character Project name
name 24 character Event name
Aname 24 character Alternate event name
type 3 character Event component type
sys 3 character Event component system
fail 3 character Failure mode

B-9

loc 3 character Component location
compID 7 character Component ID
train 3 character Train identifier
att1..att16 Class attribute

flags
16 values of Y or N (yes or no) indicate
whether the attribute described in the class
attribute file is applicable.

Is Template 1character Flag ‘Y’ if item is a template blank if not
Template Name 24 character Name of template if it uses a template blank if

it doesn’t use a template.
Use Template Flags,…, 32- 1 character

flags
32 comma separated values indicating either
values to use from the template, or what
values available if the event is a template.
(Currently only 24 of them are in use.)

1 Failure Model
2 Probability
3 Lambda
4 Tau
5 Mission Time
6 Prob – uncert distribution type
7 Prob – uncert value1
8 Prob – unsert vaule2
9 Lambda – uncert distribution type
10 Lambda – uncert value1
11 Lambda – uncert value2
12 Tau – uncert distribution type
13 Tau – uncert value1
14 Tau – uncert value2
15 Mission Time – uncert distribution type
16 Mission Time – uncert value1
17 Mission Time – uncert value2
18 Correlation class
19 Process Flag
20 Frequency Units
21 Transform Level
22 Transform Type
23 Transform Events
24 Model Type

General Rules:

1. The name field is mandatory.

B-10

Basic Event Transformations
File Name:
xxxxxx.BET
File Format:
project =
name1,level,type
bename1, bename2, . . . ,
. . . , benameN
^EOS
name2,level,type
bename1, bename2, . . . ,
. . . , benameN
^EOS
where

project 24 character Project name
name 24 character Event name
level 3 character Transformation level (0..99)
type 4 character Transformation type (AND, OR, ZOR, blank)
bename1..N 24 character Event name

Basic Event Compound Information
In SAPHIRE version 8, compound information is extracted into its own file type. Compound
events can still be loaded from .BET files (where version 6.0 extracts compound information).

File Name:
xxxxxx.BEC
File Format:
project =
name1,level,type
bename1, bename2, . . . ,
. . . , benameN
^EOS
name2,level,type, library, procedure
bename1, bename2, . . . ,
. . . , benameN
^EOS
where

project 24 character Project name

B-11

name 24 character Event name
level 3 character 0 or blank
type 4 character COM
library 60 character name of plug in library
procedure 60 character name of procedure from plug in library
bename1..N 24 character Event name

Basic Event Category

File Name:
xxxxxx.BECat
File Format:
project =
BE-name1, Category Name, Category Level (1-9), BE1 Category Lable
BE-name2, Category Name, Category Level (1-9), BE2 Category Lable
BE-name3, Category Name, Category Level (1-9), BE3 Category Lable
…

Basic Event Grade

File Name:
xxxxxx.BEG
File Format:
BE-name1, Grade
BE-name2, Grade
BE-name3, Grade
…
where

BE-namei 24 character Basic event name
Grade 1 character Type of basic event

“blank” = regular basic event
S = system generated event
V = “virtual” event

B-12

Fault Tree Information

Fault Tree Names and Descriptions

File Name:
xxxxxx.FTD
File Format:
project =
name,description[,s][,A]
. . . , . . .
where

project 24 character Project name
Name 24 character Fault tree primary name
description 120 character Fault tree description
S 1 character If included indicates fault tree is a sub-tree
A 1 character If included indicates alternate description

Fault Tree Graphics
Fault tree graphics are stored in the block data file of the Graphics relation. The MAR-D file
(.DLS) is a display list sequence for the graphics in a binary format. It is loaded and output as is
with no conversion performed.

File Name:
 xxxxxx.DLS

File Format:
 IRRAS 2.5/4.0/5.0, SAPHIRE 6.0/7.0 Fault Tree Graphics file (DLS format)

Fault Tree Logic
Fault tree logic is stored in the block data file of the System relation.

File Name:
xxxxxx.FTL
File Format:
project, fault tree =
* gatename1,description
gatename1 gatetype input1 input2 . . . inputn
.
* gatenamen,description
gatenamen gatetype input1 input2 . . . inputn
. . .
where

B-13

Project 24 character Project name
fault tree 24 character Fault tree name
Gatename 24 character Gate name
Gatetype 4 character Gate type

AND logical AND
OR logical OR
TBL table of events
TRAN transfer followed by a 24-character fault tree

name
NAND logical NOT AND
NOR logic NOT OR
N/M N out of M logic gate
CONT continuation of inputs to the previous gate

Input 24 character inputs to the gate (event or gate names)
description 120 character gate name descriptions included as comment

General Rules:

1. A gate definition cannot exceed 255 characters. (Use the CONT gate to break up
definitions.)

2. A line beginning with an asterisk (*) is a comment.
3. For each gate name a comment should be included giving the gate description.

Fault Tree Cut Sets
 File Name:
xxxxx.FTC

File Format:
project, fault tree, analysis =
eventname * eventname +
eventname * eventname * eventname *
eventname +
eventname * eventname.
^EOS
project, fault tree2 =
where

project 24 character Project name
fault tree 24 character Fault tree name
analysis 1 character Analysis type
1 Random
2 Fire
3 Flood
4 Seismic

B-14

5 through 8 Reserved
9 through 16 user-defined
eventname 24 character Event names in the cut

set

General Rules:

1. An asterisk (*) separates cut set events. Spaces are ignored.
2. A plus sign (+) separates cut sets.
3. A period (.) denotes the end of a sequence.
4. A slash (/) precedes complemented events.
5. Event names are a maximum of 4 characters including the "/".
6. A line beginning with an asterisk (*) is a comment.

Fault Tree Attributes

File Name:
xxxxx.FTA
File Format:
project, analysis =
name,level,mission,mincut,proCut,sample,seed,sizCut,sys,cuts, events,val
ue1,..,value9
. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . ,
where

project 24 character Project name
analysis 1 character Analysis type
1 Random
2 Fire
3 Flood
4 Seismic
5 through 8 Reserved
9 through 16 user-defined
name 24 character Fault tree name
level Integer 2 0 = top level tree
mission Floating

point
Mission time

mincut Floating
point

Mincut upper bound

proCut Floating
point

Probability cut off value

sample Integer 4 Sample size
seed Integer 8 Random number seed
sizecut Integer 2 Size cut off value

B-15

sys 3 character System identifier
cuts Integer 5 Base number of cut sets
events Integer 5 Base number of events
value Floating

point
Base uncertainty values

Fault Tree Recovery Rules
File Name:
xxxxxxxx.FTY
File Format:
project =
-- recovery rule text --
where

project 24 character Project name

Fault Tree Textual Information

File Name:
xxxxxx.FTT
File Format:
project, fault tree [,A]=
-- text --
^EOS
project, fault tree2 =
. . .
where

project 24 character Project name
fault tree 24 character Fault tree name
A 1 character If included indicates alternate text

B-16

Event Tree Information

Event Tree Names and Descriptions

File Name:
xxxxxx.ETD
File Format:
project =
name,description[,s][,A]
. . . , . . .
where

Project 24 character Project name
Name 24 character Event tree name
Description 120 character Event tree description
S 1 character If included indicates event tree is a transfer

tree
A 1 character If included indicates alternate description

Event Tree Attributes

File Name:
xxxxxx.ETA
File Format:
project =
name,init
. . . , . . .
where

project 24 character Project name
name 24 character Event tree name
init event 24 character Initiating Event

B-17

Event Tree Graphics
The SAPHIRE Event Tree Graphics file (*.ETG) is a display list sequence for the graphics. Its
format and contents are the same as the Event Tree Logic File.

File Name:
xxxxxx.ETG
File Format:
See file format for the Event Tree Logic

SAMPLE GRAPHICAL EVENT TREE
���
 ABCDE BCDEF CDEFG DEFGH EFGHI
 �� +5 �������
 �� +4 ������
 �� +2 ������� 3 ������� �
 � � �� -5 �������
 � �
 �� +1 ������ �� -4 ������� 5 �������
 � �
 � � �� +3 �������� 4 ������� 5 �������
 � � � �� +5 �������
 � �� -2 ������ �� +4 ������
 � � � �� -5 �������
 � �� -3 �������
�������� �� -4 ������� 5 �������
 � �� +2 ������� 3 �������� 4 ������� 5 �������
 �� -1 ������ �� +4 ������� 5 �������
 � �� +3 �������
 � � �� -4 ������� 5Transfer
 �� -2 ������ �� -4 ������� 5 �������
 � �� -4 ������� 5 �������
 �
 �� -3 �������� 4 ������� 5 �������

B-18

Event Tree Logic

File Name:
xxxxxx.ETL
File Format:
project, event tree, init event [,T] =
*Phases Marker___# phases defined___max count sequences__initial
phase
^PHASES 1 13 1
^TOPS
*Top names space seperated
ABCDE BCDEF CDEFG DEFGH EFGHI
^LOGIC 1 // initial phase, following are offset
+1.0 +2.0 3.0 +4.0 +5.0
 -5.0
 -4.0 5.0
 -2.0 +3.0 4.0 5.0
 -3.0 +4.0 +5.0
 -5.0
 -4.0 5.0
 -1.0 +2.0 3.0 4.0 5.0
 -2.0 +3.0 +4.0 5.0
 -4.0 5.0
 -4.0 5.0
 -4.0 5.0
 -3.0 4.0 5.0
^SEQUENCES 0 // offset from initial phase

Y/N, header#1, Y/N, header#2, Y/N, header#3, Y/N,header#4
Y/N, sequence#1, Y/N, end state#1, Y/N, xdata1#1, Y/N,xdata2#1
Y/N, sequence#2, Y/N, end state#2, Y/N, xdata1#2, Y/N,xdata2#2
Y/N, sequence#3, Y/N, end state#3, Y/N, xdata1#3, Y/N,xdata2#3
Y/N, sequence#4, Y/N, end state#4, Y/N, xdata1#4, Y/N,xdata2#4
Y/N, sequence#5, Y/N, end state#5, Y/N, xdata1#5, Y/N,xdata2#5
Y/N, sequence#6, Y/N, end state#6, Y/N, xdata1#6, Y/N,xdata2#6
Y/N, sequence#7, Y/N, end state#7, Y/N, xdata1#7, Y/N,xdata2#7
Y/N, sequence#8, Y/N, end state#8, Y/N, xdata1#8, Y/N,xdata2#8
Y/N, sequence#9, Y/N, tran file#9, Y/N, xdata1#9, Y/N,xdata2#9, T
Y/N, sequence#10, Y/N, end state#10, Y/N, xdata1#10, Y/N,xdata2#10

B-19

Y/N, sequence#11, Y/N, end state#11, Y/N, xdata1#11, Y/N,xdata2#11
Y/N, sequence#12, Y/N, end state#12, Y/N, xdata1#12, Y/N,xdata2#12
Y/N, sequence#13, Y/N, end state#13, Y/N, xdata1#13, Y/N,xdata2#13

^ENDSEQUENCES //Now postprocess end names
^TOPDESC
 ""
!
 ""
!
 ""
!
 ""
!
 ""
!
 ""
!
^TEXT
^PARMS
^EOS

General Rules:

1. A line beginning with an asterisk (*) is a comment.
2. Literal "^TOPS", "^LOGIC", "^SEQUENCES" labels must be present.
3. Logic is built according to the position of the top event in the definition.

 Plus sign (+)---the specified top event succeeded.
 Minus sign ()---the specified top event failed.
 Blank ()---the response of the indicated top event did not matter.

4. Header, Sequence name, End State name, Xdata1, Xdata fields associated with each
sequence. "Y/N" indicates whether the specified field is visible. A "T" at the end indicates
the sequence transfers to another tree.

5. User text is input following the ^TEXT command. Parameters include the size,
justification, color, and location of the text block.

6. The ^PARMS command allows input of program control parameters.

B-20

Event Tree Rules
File Name:
xxxxxxxx.ETR
File Format:
project, event tree =
-- event tree rule text
. . .
^EOS
project, event tree2
where:

Project 24 character Project name
Name 24 character Event tree name
Tops 24 character Top event/fault tree names

Event Tree Textual Information
File Name:
xxxxxx.ETT
File Format:
project, event tree [,A]=
-- text --
^EOS
project, event tree2 =
-- text --
where

project 24 character Project name
event tree 24 character Event tree name
A 1 character If included indicates alternate description

 Event Tree Recovery Rules

File Name:
xxxxxxxx.ETY
File Format:
project, event tree =
-- recovery rule text --
^EOS
project, event tree2 =
where

project 24 character Project name
event tree 24 character Event tree name

B-21

Event Tree Partition Rules
File Name:
xxxxxxxx.ETP
File Format:
project, event tree =
-- partition rule text --
^EOS
project, event tree2 =
where

Project 24 character Project name
event tree 24 character Event tree name

End State Information

Each sequence can be tied to a single plant damage state. The cut sets for a sequence can be
partitioned to map to separate end state. The name and description data are loaded with the
SARA *.PDS file.

End State Names and Descriptions
File Name:
xxxxxx.ESD
File Format:
project =
name,description[,A]
. . . , . . .
where

project 24 character Project primary name
name 24 character End state primary name
description 120 character End state description
A 1 character If included indicates alternate description

End State Information

File Name:
xxxxxx.ESI
File Format:
project =
Name, E-QMethod, E-QPasses, R-QMethod, R-QPasses,
. ,,,,,
where

project 24 character Project name

B-22

name 24 character End state name
e-Qmethod 1 character End state default quantification method
e-Qpasses Integer 3 End state default min/max quantification

passes
r-QMethod 1 character Quantification method used for current results
r-Qpasses Integer 3 Min/max quantification passes used for

current results

End State Textual Information
File Name:
end-state.EST
File Format:
project, end state[, A]=
-- text --
where

project 24 character Project name
end state 24 character End state name
A 1 character If included indicates alternate description

End State Cut sets

The end state cut sets are the minimal cut sets for end state logic as derived from the fault tree
logic. The cut sets are stored in the block data file of the Endstate relation.

The MAR-D end state cut sets are in a format similar to that of the fault tree cut sets.

File Name:
xxxxxx.ENC
File Format:
project, event tree, end state =
eventname * eventname +
eventname * eventname * eventname *
eventname +
eventname * eventname.
^EOS
project, event tree2, end state =
where

Project 24 character Project name
event tree 24 character Event tree name
end state 24 character End state name
Eventname 24 character Event names in the cut set

General Rules:

B-23

1. An asterisk (*) separates events in a cut set. Spaces are ignored.
2. A plus sign (+) separates cut sets.
3. A period (.) denotes the end of the end state cut sets.
4. A slash (/) precedes complemented events.
5. Event names have a maximum of 24 characters including the "/" character for

complemented events.
6. A line beginning with an asterisk (*) is a comment.

Sequence Information

Sequence Names and Descriptions

File Name:
xxxxxx.SQD
File Format:
project,eventree =
name,description[,A]
. . . , . . .
^EOS
where

project 24 character Project name
event tree 24 character Event tree name
name 24 character Sequence name
description 120 character Sequence description
A 1 character If included indicates alternate description

Sequence Cut sets

The sequence cut sets are the minimal cut sets for sequence logic as derived from the fault tree
logic. The cut sets are stored in the block data file of the Sequence relation.

The MAR D sequence cut sets (.SQC) are in a format similar to that of the fault tree cut sets.

File Name:
xxxxxx.SQC
File Format:
project, event tree, sequence, analysis =
eventname * eventname +hjn
eventname * eventname * eventname *
eventname +
eventname * eventname.
^EOS
project, event tree2, sequence2 =

B-24

where
project 24 character Project name
event tree 24 character Event tree name
sequence 24 character Sequence name
analysis 1 character Analysis type
1 Random
2 Fire
3 Flood
4 Seismic
5 through 8 Reserved
9 through 16 user-defined
eventname 24 character Event names in the cut set

General Rules:

1. An asterisk (*) separates events in a cut set. Spaces are ignored.
2. A plus sign (+) separates cut sets.
3. A period (.) denotes the end of the sequence.
4. A slash (/) precedes complemented events.
5. Event names have a maximum of 24 characters including the "/" character for

complemented events.
6. A line beginning with an asterisk (*) is a comment.

Sequence Attributes
File Name:
xxxxxx.SQA
File Format:
project, event tree, analysis =
name,endstate,mincut,mission,procut,sample,seed,size,cuts,
events,value1, . . . ,value9,default flags, used flags
. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . .
^EOS
project, event tree2 =
where

project 24 character Project name
event tree 24 character Event tree name
analysis 1 character Analysis type

1 Random
2 Fire
3 Flood
4 Seismic

B-25

5 through 8 Reserved
9 through 16 user-defined

name 24 character Sequence name
endstate 24 character End State name
mincut Floating point Mincut upper bound
mission Floating point Mission time in hours
procut Floating point Probability cut off value
sample Integer 4 Sample size
seed Integer 8 Random number seed
size Integer 2 Size cut off value
cuts Integer 5 Base number of cut sets
events Integer 5 Base number of events
value Floating point Base uncertainty values

value1 5th percentile
value2 Median
value3 Mean
value4 95th percentile
value5 Minimum sample
value6 Maximum sample
value7 Standard deviation
value8 Skewness
value9 Kurtosis

Default flags 24 character Default flag set for this sequence
Used flags 24 character Flag set used to generate these cut sets

Sequence Logic

File Name:
xxxxxxxx.SQL
File Format:
project, event tree, sequence=
sys1 sys2 /sys3 sys4
. . .
^EOS
project, event tree2, sequence2=
where

Project 24 character Project name
event tree 24 character Event tree name
Sequence 24 character Sequence name
Sys 24 character Fault tree name

B-26

Sequence Textual Information

File Name:
xxxxxx.SQT
File Format:
project, event tree, sequence[, A]=
--- text ---
^EOS
project, event tree2, sequence2=
--- text ---
where

project 24 character Project name
sequence 24 character Sequence name
event tree 24 character Event tree name
A 1 character If included indicates alternate description

Sequence Recovery Rules
File Name:
xxxxxxxx.SQY
File Format:
project, event tree, sequence =
-- recovery rule text --
^EOS
project, event tree, sequence2 =
where

project 24 character Project name
event tree 24 character Event tree name
sequence 24 character Sequence name

Sequence Partition Rules
File Name:
xxxxxxxx.SQP
File Format:
project, event tree, sequence =
-- partition rule text --
^EOS
project, event tree, sequence2 =
where

Project 24 character Project name

B-27

event tree 24 character Event tree name
Sequence 24 character Sequence name

Gates

Gate Description
File Name:
xxxxxx.GTD
File Format:
project=
name,description[,A]
where

Project 24 character Project name
Name 24 character Gate name
description 120 character Gate description
A 1 character If included indicates alternate description

Gate Attributes
File Name:
xxxxxx.GTA
File Format
project=
name,attribute
where

Project 24 character Project name
Name 24 character Gate name
Attribute 4 character Gate type

Change Sets

Change Set Description

File Name:
xxxxxx.CSD
File Format:
project=
name,description[,A]
...,...
where

project 24 character Project name
name 24 character Change set name

B-28

description 120 character Change set description
A 1 character If included indicates alternate description

Change Set Information

File Name:
xxxxxx.CSI
File Format:
project, change=
^PROBABILITY
eventname,calc,udT,prob,lambda,tau,udV,udC,mission,init,udV2
^CLASS
eventname,group,compType,compId,system,location,failMode,train,init,att1
,..att16
* CLASS PROBABILITY HEADER
calcType,udT,prob,lambda,tau,udV,udC,mission,init,udV2
^EOS
project,change2=
where

change 24 character change set name
name 24 character name mask
group 24 characters event group mask
compType 7 characters component type mask
compId 3 characters component ID mask
system 3 characters system mask
location 3 characters location mask
failMode 2 characters failure mode mask
train 2 characters train mask
init 1 character initiating event (Y/N)
att1..att16 Class attribute

flags
16 values of Y or N (yes or no) indicate
whether the attribute described in the class
attribute file is applicable.

calc 1 character Calculation type

1 Probability
3 1 Exp(-Lambda * Mission Time)
5 Operating component with full repair
7 1+(EXP(Lambda*Tau) 1.0)/(Lambda*Tau)
8 Base Probability * Probability
9 Base Probability * Probability

B-29

T Set to House Event (Failed, Prob=1.0)
F Set to House Event (Successful,Prob=0.0)
I Set to ignore
S Use fault tree min cut upper bound
E Use end state min cut upper bound
G Seismic event - Enter g level for screening
H Use medium site hazard curve
B Use base case (even if prior marked change sets have

altered the value)

 udT 1 character Uncertainty distribution type

P Use point estimate
L Log normal, error factor
N Normal, standard deviation
B Beta, b of Beta(a,b)
D Dirichlet, b of Dirichlet(a,b)
G Gamma, a of Gamma(a)
C Chi-squared, degrees of freedom
E Exponential, none
U Uniform, Upper end pt.
H Histogram
M Maximum entropy
S Seismic log normal, betaR, betaU
O Constrained non-informative

prob Floating point Probability value
lambda Floating point Basic event failure rate per hr.
tau Floating point Time to repair in hours
udV
udV2

Floating point
Floating point

Uncertainty distribution value
Uncertainty distribution value 2

udC 24 characters Uncertainty correlation class. Events in same
class are 100% correlated.

mission Floating point Mission time
init Boolean (T/F) Initiating event

Change Set Attributes
File Name:
xxxxxx.CSA
File Format:
project=
name,altName, type

B-30

...,...
where

project 24 character Project name
name 24 character Change set primary name
altName 24 character Change set alternate name
type 1 character C = change set

F = flag set
subtype 1 character Blank – default (no sub type)

S = sensitivity
P = permanent (always used during a
Workspace analysis) – not currently used.

Histograms

Histogram Description

File Name:
xxxxxxxx.HID
File Format:
project =
name, type, subtype, description[, A]
where

project 24 characterProject name
name 24 characterHistogram primary name
type 1 character Histogram type
H Hazard
U Uncertainty
F Fragility
subtype 1 character Histogram subtype
P Percent
A Area
R Range
H Hazard
Description 120

character
Histogram description

A 1 character If included indicates
alternate description

B-31

Histogram Information
File Name:
xxxxxxxx.HII
File Format:
project, name1=
type, subtype
bin1 value1, bin1 value2
bin2 value1, bin2 value2
...
bin20 value1, bin20 value2
^EOS
project, name2 =
where

Project 24 character Project name
NameN 24 character Histogram primary name
Type 1 character Histogram type
H Hazard
U Uncertainty
F Fragility
Subtype 1 character Histogram subtype
P Percent
A Area
R Range
H Hazard
bin value1 Exponential first value for bin
bin value2 Exponential second value for bin

Histogram Attributes

File Name:
xxxxxxxx.HII
File Format:
project =
name, type, subtype, altName
where

project 24 character Project name
name 24 character Histogram primary name
type 1 character Histogram type
H Hazard
U Uncertainty
F Fragility
subtype 1 character Histogram subtype

B-32

P Percent
A Area
R Range
H Hazard
altName 24 character Histogram alternate

name

Appendix C

MAR-D Files for Sample Database

C-2

C-3

 C. MAR-D Files for Sample Database

SAPHIRE Version 8 MAR-D formats for the Sample Database are presented.

Note that these examples are shown in a document created by a word processor. Actual MAR-
D files should be edited in a text editor, such as Notepad, so that formatting codes are not
embedded into the text. SAPHIRE handles only ASCII text characters.

In this document, some line wrapping occurs so that entire lines can be displayed. Where this
occurs in this document, the wrapped line will appear indented.

PROJECT FILES
These are examples of files (or partial files) in MAR-D formats for the Sample database.

Project Names and Description File (.FAD)

SAMPLE ,This is a sample data base

Project Attribute File (.FAA)

SAMPLE , 0001 =
* Name , Mission , NewSum , Company , Location ,Typ,

Design ,Vendr, Arch Eng , OpDate , QualDate
SAMPLE , 2.400E+001,+0.000E+000,STANDARD ,HOMETOWN ,

, , , ,----/--/--,----/--/--

Project Text File (.FAT)

SAMPLE =
 A simple example that models the probability of getting to work on

time.
SAMPLE =
 A simple example that models the probability of getting to work on time.

C-4

BASIC EVENT FILES

Basic Event Names and Description File (.BED)

SAMPLE =
ALARM ,ALARM CLOCK FAILURE , , RANDOM ,
ALM-BPF ,Alarm fails due to battery failure , , RANDOM

,
ALM-CPF ,Alarm fails due to commercial power failure , , RANDOM

,
ALM-FTS ,Alarm fails because worker fails to set , , RANDOM

,
ALM-MECH ,Alarm fails due to mechanical failure , , RANDOM

,
ALM-SWT ,Alarm fails because worker set wrong time , , RANDOM

,
MEDICINE ,Recovery for sick failure preventing attending work , ,

RANDOM ,
OTHER ,Other personal reasons that cause a failure to get to

work , , RANDOM ,
PER-TRNS ,Personal transportation , , RANDOM ,
PERSONAL ,PERSONAL PROBLEMS , , RANDOM ,
PUB-TRNS ,Public transportation fails , , RANDOM

,
PUB-TRNS-LATE ,Public transportation fails late time frame , , RANDOM

,
SICK ,Failed to get to work because of illness , , RANDOM

,
SICK-FAM ,Failed to get to work because of illness in project , ,

RANDOM ,
TRNS-2 ,COMMERCIAL TRANSPORTATION FAILS AT A LATER TIME , ,

RANDOM ,
TRNSPRT ,PERSONAL AND COMMERCIAL TRANSPORTATION FAIL , , RANDOM

,
WORK ,Event tree (WORK) initiating event , , RANDOM

,

Basic Event Rate Information File (.BEI)

SAMPLE =
* Name ,FdT,UdC,UdT, UdValue , Prob , Lambda , Tau ,

Mission, Init, PF, UdValue2, Calc. Prob, Freq, Analysis Type
, Phase Type

ALARM ,1, ,L, 1.000E+000, 1.000E+000,+0.000E+000,
+0.000E+000,+0.000E+000, , ,+0.000E+000, 1.000E+000, , RANDOM
,

ALM-BPF ,1, ,L, 3.000E+000, 9.000E-008,+0.000E+000,
+0.000E+000,+0.000E+000, , ,+0.000E+000, 1.000E+000, , RANDOM
,

ALM-CPF ,1, ,L, 3.000E+000, 1.500E-002,+0.000E+000,
+0.000E+000,+0.000E+000, , ,+0.000E+000, 1.000E+000, , RANDOM
,

ALM-FTS ,1, ,L, 1.000E+001, 5.500E-006,+0.000E+000,
+0.000E+000,+0.000E+000, , ,+0.000E+000, 1.000E+000, , RANDOM
,

C-5

ALM-MECH ,1, ,L, 3.000E+000, 2.700E-008,+0.000E+000,
+0.000E+000,+0.000E+000, , ,+0.000E+000, 1.000E+000, , RANDOM
,

ALM-SWT ,1, ,L, 1.000E+001, 2.700E-003,+0.000E+000,
+0.000E+000,+0.000E+000, , ,+0.000E+000, 1.000E+000, , RANDOM
,

MEDICINE ,1, ,L, 5.000E+000, 5.000E-001,+0.000E+000,
+0.000E+000,+0.000E+000,R, ,+0.000E+000, 1.000E+000, , RANDOM
,

OTHER ,1, ,L, 1.000E+001, 8.100E-003,+0.000E+000,
+0.000E+000,+0.000E+000, , ,+0.000E+000, 1.000E+000, , RANDOM
,

PER-TRNS ,1, ,L, 5.000E+000, 5.500E-003,+0.000E+000,
+0.000E+000,+0.000E+000, , ,+0.000E+000, 1.000E+000, , RANDOM
,

PERSONAL ,1, ,L, 1.000E+000, 1.000E+000,+0.000E+000,
+0.000E+000,+0.000E+000, , ,+0.000E+000, 1.000E+000, , RANDOM
,

PUB-TRNS ,1, ,L, 3.000E+000, 2.700E-003,+0.000E+000,
+0.000E+000,+0.000E+000, , ,+0.000E+000, 1.000E+000, , RANDOM
,

PUB-TRNS-LATE ,1, ,L, 3.000E+000, 2.000E-003,+0.000E+000,
+0.000E+000,+0.000E+000, , ,+0.000E+000, 1.000E+000, , RANDOM
,

SICK ,1, ,L, 1.000E+001, 8.100E-003,+0.000E+000,
+0.000E+000,+0.000E+000, , ,+0.000E+000, 1.000E+000, , RANDOM
,

SICK-FAM ,1, ,L, 1.000E+001, 4.000E-003,+0.000E+000,
+0.000E+000,+0.000E+000, , ,+0.000E+000, 1.000E+000, , RANDOM
,

TRNS-2 ,1, ,L, 1.000E+000, 1.000E+000,+0.000E+000,
+0.000E+000,+0.000E+000, , ,+0.000E+000, 1.000E+000, , RANDOM
,

TRNSPRT ,1, ,L, 1.000E+000, 1.000E+000,+0.000E+000,
+0.000E+000,+0.000E+000, , ,+0.000E+000, 1.000E+000, , RANDOM
,

WORK ,1, ,L, 2.000E+000, 2.480E+002,+0.000E+000,
+0.000E+000,+0.000E+000,I, ,+0.000E+000, 1.000E+000, , RANDOM
,

Basic Event Attribute File (.BEA)

SAMPLE =
* Name ,AltName ,Typ,Sys,Fail,Loc,CompId,Train,

Attributes ,Template Name ,Use
TemplateFlags ,Shape

ALARM ,ALARM ,DE , , , , ,
,Y,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
,F,

ALM-BPF ,ALM-BPF , , , , , ,
,Y,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
,F,

ALM-CPF ,ALM-CPF , , , , , ,
,Y,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
,F,

C-6

ALM-FTS ,ALM-FTS , , , , , ,
,Y,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
,F,

ALM-MECH ,ALM-MECH , , , , , ,
,Y,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
,F,

ALM-SWT ,ALM-SWT , , , , , ,
,Y,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
,F,

MEDICINE ,MEDICINE , , , , , ,
,Y,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
,F,

OTHER ,OTHER , , , , , ,
,Y,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
,F,

PER-TRNS ,PER-TRNS , , , , , ,
,Y,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
,F,B

PERSONAL ,PERSONAL ,DE , , , , ,
,Y,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
,F,

PUB-TRNS ,PUB-TRNS , , , , , ,
,Y,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
,F,

PUB-TRNS-LATE ,PUB-TRNS-LATE , , , , , ,
,Y,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N, ,
,F,B

SICK ,SICK , , , , , ,
,Y,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
,F,

SICK-FAM ,SICK-FAM , , , , , ,
,Y,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
,F,

TRNS-2 ,TRNS-2 ,DE , , , , ,
,Y,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
,F,

TRNSPRT ,TRNSPRT ,DE , , , , ,
,Y,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
,F,

WORK ,WORK , , , , , ,
,Y,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
,F,

FAULT TREE FILES

Fault Tree Names and Description File (.FTD)
SAMPLE =
ALARM ,ALARM CLOCK FAILURE
PERSONAL ,PERSONAL PROBLEMS
TRNS-2 ,COMMERCIAL TRANSPORTATION FAILS AT A LATER TIME
TRNSPRT ,PERSONAL AND COMMERCIAL TRANSPORTATION FAIL

C-7

Fault Tree Logic File (.FTL)
SAMPLE, ALARM =
ALARM OR ALARM-1 ALARM-2 ALM-MECH
ALARM-1 OR ALM-FTS ALM-SWT
ALARM-2 AND ALM-BPF ALM-CPF
^EOS
SAMPLE, PERSONAL =
PERSONAL OR OTHER SICK SICK-FAM
^EOS
SAMPLE, TRNS-2 =
TRNS-2 AND PER-TRNS PUB-TRNS-LATE
^EOS
SAMPLE, TRNSPRT =
TRNSPRT AND PER-TRNS PUB-TRNS

Fault Tree Cut Sets File (.FTC)
SAMPLE, ALARM, 0001=
ALM-BPF * ALM-CPF +
ALM-FTS +
ALM-MECH +
ALM-SWT .
^EOS
SAMPLE, PERSONAL, 0001=
OTHER +
SICK +
SICK-FAM .
^EOS
SAMPLE, TRNS-2, 0001=
PER-TRNS * PUB-TRNS-LATE .
^EOS
SAMPLE, TRNSPRT, 0001=
PER-TRNS * PUB-TRNS .

Fault Tree Attribute File (.FTA)
SAMPLE, 0001 =
* Name , Level, Mission , MinCut , Def ProCut,Used

ProCut,Sample,Seed,Siz,Sys,Cuts,Events, UdValues,
Def Flags, Used Flags, S QMethod, S QPasses, R
QMethod, R QPasses

ALARM ,0, 2.400E+001, 2.706E-003,------E----,------E----, -----,-----,--
, ,------,-----,------E----,------E----,------E----,------E----,-----
-E----,------E----,------E----,------E----,------E----,
, , ,----,M, 0

PERSONAL ,0, 2.400E+001, 2.007E-002,------E----,------E----, -----,-----,--
, ,------,-----,------E----,------E----,------E----,------E----,-----
-E----,------E----,------E----,------E----,------E----,
, , ,----,M, 0

TRNS-2 ,0, 2.400E+001, 1.100E-005,------E----,------E----, -----,-----,--
, ,------,-----,------E----,------E----,------E----,------E----,-----

C-8

-E----,------E----,------E----,------E----,------E----,
, , ,----,M, 0

TRNSPRT ,0, 2.400E+001, 1.485E-005,------E----,------E----, -----,-----,--
, ,------,-----,------E----,------E----,------E----,------E----,-----
-E----,------E----,------E----,------E----,------E----,
, , ,----,M, 0

Fault Tree Text File (.FTT)
SAMPLE, ALARM=
The ALARM fault tree is a simple representation modeling alarm clock failure.
Some common reasons for alarm clock failure include setting the wrong time,
mechanical failure, or power failure (either battery or commercial).

EVENT TREE FILES
Event Tree Names and Descriptions File (.ETD)

SAMPLE =
WORK ,WORK EVENT TREE

Event Tree Graphics File (.ETG)

SAMPLE, WORK, WORK =
^WINVER2.1
^PHASES 1 5 1 //# phases defined, max count sequences, initial phase
PHASE_1 16155777 "Phase 1"
^TOPS
ALARM, PERSONAL, TRNSPRT
^LOGIC 1 // initial phase, following are offset
 +1.0 +2.0 +3.0
 -3.0
 -2.0 3.0
 -1.0 2.0 +3.0
 -3.0
^SEQUENCES 0 // offset from initial phase
N, Endstate, N, Sequence Name, N, Frequency, N, Extra,
Y, A, Y, OK, Y, , Y, , ,
Y, B, Y, LATE-TO-WORK, Y, , Y, , ,
Y, C, Y, MISS-WORK, Y, , Y, , ,
Y, D, Y, LATE-TO-WORK, Y, , Y, , ,
Y, E, Y, LATE-TO-WORK, Y, , Y, , ,
^ENDSEQUENCES //Now postprocess end names
^TOPDESC
 "Initiating event"
!
 "Alarm Failure"
!
 "Personal problems"
!
 "Personal and commercial"
 "transportat ion failure"
!
^TEXT
^PARMSDESPITCH 2

C-9

NODEHITE 20.00
ENDSIZE -15.00
ENDFONT 1
ENDFACE Times_New_Roman
ENDPITCH 2
ENDCOLOR 15
BACKCOLOR 1
TOPBACKCOLOR 1
LINECOLOR 15
HILITECOLOR 1
LOCALE 1033
MODDATE 2003/09/23

Event Tree Logic File (.ETL)
SAME AS THE .ETG FILE SECTION C.5.2

Event Tree Attribute File (.ETA)
SAMPLE =
* Name , Init Event
WORK , WORK

Event Tree Rules File (.ETR)
SAMPLE, WORK=
| rule to substitute TRNS-2 for TRNSPRT
if ALARM then
 TRNSPRT = TRNS-2;
endif

Event Tree Recovery Rules (.ETY)
SAMPLE, WORK=
| rule to add recovery potential to the cut sets
if SICK then
 recovery = MEDICINE;
endif

Event Tree Text File (.ETT)
SAMPLE, WORK=
A FAIL-SUCCESS LOGIC WAS USED TO DEVELOP AN EVENT TREE TO CALCULATE THE
FREQUENCY THAT THE AVERAGE PERSON WILL ARRIVE ON TIME, BE LATE, OR MISS A DAY
OF WORK.

C-10

END STATE FILES

End State Names and Description File (.ESD)
SAMPLE =
LATE-TO-WORK , This end state represents being late to work
MISS-WORK , This end state represents missing work

End State Text File (.EST)

SAMPLE, LATE-TO-WORK=
THIS IS THE LATE TO WORK END STATE.

SEQUENCE FILES

Sequence Names and Description File (.SQD)

SAMPLE, WORK=
2 ,LATE TO WORK
3 ,MISS WORK
4 ,LATE TO WORK
5 ,LATE TO WORK

Sequence Cut Set File (.SQC)
SAMPLE, WORK, 2, 0001=
PER-TRNS * PUB-TRNS .
^EOS
SAMPLE, WORK, 3, 0001=
OTHER +
SICK * MEDICINE +
SICK-FAM .
^EOS
SAMPLE, WORK, 4, 0001=
ALM-BPF * ALM-CPF +
ALM-FTS +
ALM-MECH +
ALM-SWT .
^EOS
SAMPLE, WORK, 5, 0001=
ALM-BPF * ALM-CPF * PER-TRNS * PUB-TRNS-LATE +
ALM-FTS * PER-TRNS * PUB-TRNS-LATE +
ALM-MECH * PER-TRNS * PUB-TRNS-LATE +
ALM-SWT * PER-TRNS * PUB-TRNS-LATE .

C-11

Sequence Cut Set Attribute File (.SQA)
SAMPLE, WORK, 0001=
* Name , End State , MinCut , Mission , ProCut

,Sample,Seed,Siz,Cuts,Events, UdValues, Def Flags, Used FlagsS QMethod,
S QPasses, R QMethod, R QPasses

2 ,LATE-TO-WORK , 3.683E-003, 2.400E+001,------E----, 1000,40777,--,
1, 3,------E----,------E----,------E----,------E----, ------E----,--
----E----,------E----,------E----,------E----, , , ,----,M, 0

3 ,MISS-WORK , 3.985E+000, 2.400E+001,------E----, 1000,46267,--,
3, 5,------E----,------E----,------E----,------E----, ------E----,--
----E----,------E----,------E----,------E----, , , ,----,M, 0

4 ,LATE-TO-WORK , 6.710E-001, 2.400E+001,------E----, 1000,52257,--,
4, 6,------E----,------E----,------E----,------E----, ------E----,--
----E----,------E----,------E----,------E----, , , ,----,M, 0

5 ,LATE-TO-WORK , 7.381E-006, 2.400E+001,------E----, 1000,58407,--,
4, 8,------E----,------E----,------E----,------E----, ------E----,--
----E----,------E----,------E----,------E----, , , ,----,M, 0

Sequence Logic File (.SQL)
SAMPLE, WORK, 2=
/ALARM /PERSONAL TRNSPRT .
^EOS
SAMPLE, WORK, 3=
/ALARM PERSONAL .
^EOS
SAMPLE, WORK, 4=
ALARM /TRNSPRT .
^EOS
SAMPLE, WORK, 5=
ALARM TRNS-2 .

Sequence Text File (.SQT)
SAMPLE, WORK, 3=

Sequence 3 is the event tree sequence that is used to demonstrate the use of
recovery rules or recovery actions.

C-12

GATE FILES
Gate Description File (.GTD)

SAMPLE =
ALARM , ALARM CLOCK FAILURE
ALARM-1 , ALARM CLOCK SETTING FAILURE
ALARM-2 , ALARM CLOCK POWER FAILURE
PERSONAL , PERSONAL PROBLEMS
TRNS-2 , COMMERCIAL TRANSPORTATION FAILS AT A LATER TIME
TRNSPRT , PERSONAL AND COMMERCIAL TRANSPORTATION FAILURE

Gate Attributes File (.GTA)
SAMPLE=
* Name , Type , Alternate Name
ALARM , OR , ALARM
ALARM-0 , AND , ALARM-0
ALARM-1 , OR , ALARM-1
ALARM-2 , OR , ALARM-2
BD , TRAN , BD
BE , TRAN , BE
BF , TRAN , BF
BG , TRAN , BG
EJ , OR , EJ
PERSONAL , OR , PERSONAL
TRNS-2 , OR , TRNS-2
TRNSPRT , OR , TRNSPRT

NRC FORM 335 U.S. NUCLEAR REGULATORY
COMMISSION

(2-89)
NRCM 1102, BIBLIOGRAPHIC DATA SHEET
3201. 3202 (See Instructions on the reverse)

1. REPORT NUMBER
 (Assigned by NRC, Add Vol.,
 Supp., Rev., and Addendum
 Numbers, if any.)
NUREG/CR-7039, Vol. 7
INL/EXT-09-17015

2. TITLE AND SUBTITLE 3. DATE REPORT PUBLISHED

Systems Analysis Programs for Hands-on Integrated Reliability Evaluations
(SAPHIRE) Version 8

Volume 7 Data Loading

MONTH

MARCH

YEAR

2011

 4. FIN OR GRANT NUMBER

 N6423
5. AUTHOR(S) 6. TYPE OF REPORT

 Technical
K. J. Kvarfordt, S. T. Wood, C. L. Smith, S. R. Prescott 7. PERIOD COVERED (Inclusive Dates)

8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory
Commission, and mailing address; if contractor, provide name and mailing address.)

Idaho National Laboratory
Battelle Energy Alliance
P.O. Box 1625
Idaho Falls, ID 83415-3850
9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type “Same as above”; If contractor, provide NRC Division, Office or
Region, U.S. Nuclear Regulatory Commission, and mailing address.)
Division of Risk Analysis
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001
10. SUPPLEMENTARY NOTES

D. O’Neal, NRC Project Manager
11. ABSTRACT (200 words or less)
The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software
application developed for performing a complete probabilistic risk assessment (PRA) using a personal
computer. This report is intended to assist the user to enter PRA data into the SAPHIRE program using
the built-in MAR-D ASCII-text file data transfer process. Towards this end, a small sample database is
constructed and utilized for demonstration. Where applicable, the discussion includes how the data
processes for loading the sample database relate to the actual processes used to load a larger PRA
models. The procedures described herein were developed for use with SAPHIRE Version 8. The
guidance specified in this document will allow a user to have sufficient knowledge to both understand the
data format used by SAPHIRE and to carry out the transfer of data between different PRA projects.
12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the
report.)

13. AVAILABILITY STATEMENT
Unlimited

SAPHIRE 8, software, data loading, load, extract, MAR-D 14. SECURITY CLASSIFICATION
 (This page)
Unclassified
 (This report)
 Unclassified

 15. NUMBER OF PAGES

 16. PRICE

NRC FORM 335 (2-89)

